
DOI:10.19853/j.zgjsps.1000-4602.2020.17.001

膜传氧生物膜反应器在污水厂升级改造中的应用

龙泽波 1 , 罗 敏 2 , 马文超 2 , Dwight Houweling 1 , 陈建刚 2 , 步春梅 2 (1. 苏伊士水务技术加拿大公司,加拿大; 2. 苏伊士水务技术 < 上海 > 有限公司,上海 201210)

摘 要: ZeeLungTM 膜传氧生物膜反应器工艺(ZeeLungTM MABR 工艺)在美国伊利诺斯州 YBSD 污水处理厂成功应用,成为目前世界上最大的 MABR 污水处理厂。ZeeLungTM MABR 工艺将原有的好氧活性污泥系统改造成 A^2O 工艺系统, ZeeLungTM 膜箱安装于改造后的缺氧池,在不新建生化构筑物的条件下,即可满足日益增长的有机负荷及新的出水总磷指标要求(低于 1 mg/L,通过生物除磷即可实现)。为期 1 年的运行数据表明,升级后系统的出水水质可稳定达到目标要求,实现了生物除磷及 ZeeLungTM 池内的同步硝化反硝化。ZeeLungTM 生物膜优先进行硝化,平均传氧速率为 $12.0 \, \text{g/}(\text{m}^2 \cdot \text{d})$,在平均硝化速率为 $2.1 \, \text{g/}(\text{m}^2 \cdot \text{d})$ 的条件下,80%的传氧用于硝化,在保持传氧能力的前提下确保氨氮及总氮的同步去除效果。半经验动力学模型可用于模拟 ZeeLungTM 的硝化速率,其温度系数接近于 1,表明水温对 ZeeLungTM 硝化速率的影响很小。

关键词: 膜传氧生物膜反应器; 同步硝化反硝化; 传氧速率; 硝化速率 中图分类号: TU992 文献标识码: A 文章编号: 1000 - 4602(2020)17 - 0001 - 05

Application of Membrane Aerated Biofilm Reactor in Upgrading of Wastewater Treatment Plant

LONG Ze-bo¹, LUO Min², MA Wen-chao², Dwight Houweling¹, CHEN Jian-gang², BU Chun-mei²

(1. SUEZ Water Technologies & Solutions, Canada; 2. SUEZ Water Technologies < Shanghai > Co. Ltd., Shanghai 201210, China)

Abstract: ZeeLungTM membrane aerated biofilm reactor (MABR) technology has been successfully applied in wastewater treatment plant (WWTP) of Yorkville-Bristol Sanitary District (YBSD) in Illinois, USA, and it has become the largest MABR WWTP in the world currently. The original aerobic activated sludge system was transformed into the A^2O process system by ZeeLungTM MABR process. ZeeLungTM cassettes were installed in the retrofitted anoxic tanks to meet the increasing organic loading and new effluent total phosphorus (TP) limit(less than 1 mg/L, by biological phosphorus removal) without building new biological tanks. One-year operational data demonstrated that the effluent quality of the upgraded system could achieve the target stably, and the biological phosphorus removal and simultaneous nitrification and denitrification in ZeeLungTM tank were realized. ZeeLungTM biofilm prioritized nitrification. The average oxygen transfer rate (OTR) of ZeeLungTM was 12.0 g/(m²·d).

通信作者: 龙泽波 E - mail:zebo. long@ suez. com

When the average nitrification rate (NR) was $2.1~\mathrm{g/(m^2 \cdot d)}$, more than 80% of OTR were utilized for nitrification, indicating that stable nitrification and simultaneous total nitrogen (TN) removal were achieved under the premise of maintaining the oxygen supply capability. The semi-empirical kinetic model well predicted the NR of ZeeLungTM, and the temperature coefficient was close to 1, indicating that water temperature had little influence on NR of the ZeeLungTM.

Key words: membrane aerated biofilm reactor (MABR); simultaneous nitrification and denitrification; oxygen transfer rate; nitrification rate

美国伊利诺斯州约克维尔市(YBSD)污水处理厂主体工艺采用好氧活性污泥法,由于新工业用户的迁入以及人口的增长,预计在未来几年内其进水BOD₅负荷将迅速达到并超过其设计负荷。另外,YBSD污水处理厂从2019年5月起需要满足出水总磷低于1 mg/L 的排放要求。鉴于该污水处理厂已占用全部用地以及改造的迫切性,经多方案对比,决定采用投资省(总投资仅为达到目标所需新建传统活性污泥法污水处理厂的25%)、能耗低(负荷增加但能耗不增加)、工期短(18个月)的 ZeeLung™膜传氧生物膜反应器(ZeeLung™ MABR)工艺进行升级改造[1-2]。

ZeeLung[™] MABR 工艺的工作原理在于利用氧 气选择性透气膜与附着生长型生物膜之间的协同作 用,采用透气膜将氧气传递至透气膜表面附着的生 物膜,同时氨氮和有机物等基质从污水扩散到生物 膜中,而安装在缺氧池中的 MABR 好氧生物膜(以 硝化菌为优势菌)和在缺氧池悬浮生长的反硝化菌 实现同步硝化反硝化(SND)来强化对污水中氨氮和 总氮的去除^[2]。MABR 工艺和传统的生物膜技术相 比,不同的是氧气的传质方向和氨氮、有机物的传质 方向是对向流,考虑到氨氮和有机物的传质速率差 异性,可有效避免硝化自养菌和去除有机物的异养 菌在氧气上的竞争,同时通过尾气的大气泡脉冲擦 洗使得 ZeeLung™ MABR 表面生物膜厚度的控制简 单可行。ZeeLung™是苏伊士公司推出的一款创新 性带内支撑的加强型中空纤维透氧膜产品,寓意 "会呼吸"的膜。从充氧动力效率而言,传统意义上 的曝气方式效率低,大量能源被浪费,而 ZeeLung™ 的充氧动力效率在 6 kgO₂/(kW·h)以上,是普通 微孔曝气的 4 倍左右,由于氧气直接供给 ZeeLung™ MABR 上的生物膜,不存在阿尔法系数转化问题,所 以采用 ZeeLung™ MABR 工艺不仅可以节省能耗, 还可以降低鼓风机装机负荷,对于现有污水厂的升

级改造,一般可以直接利用现有鼓风机而无需额外增加 MABR 专用鼓风机。

1 YBSD 污水处理厂升级改造概况

1.1 MABR 升级改造工艺流程

基于表 1 的设计参数和表 2 的目标出水水质,以及 YBSD 污水处理厂原有构筑物尺寸(反应池总容积为 4 883 m³),MABR 升级改造工艺拟将原有好氧池 1 和 6 改造为厌氧池,将原有好氧池 2 和 7 改造为缺氧池(见图 1),改造后的好氧池占原池容的60%,缺氧池(ZeeLung™膜池)和厌氧池各占原池容的20%。厌氧池与缺氧池新增射流混合装置,ZeeLung™膜箱(一期及二期各 12 个膜箱,两期共 24个膜箱)安装于缺氧池内。YBSD 污水处理厂升级改造分两期进行,一期工程于2017年完成除好氧池7以外的其他升级改造。改造后系统的污泥回流比仍保持原设计的60%不变,没有硝化液回流。

表 1 YBSD 污水厂的主要设计参数及 2015 年现状

Tab. 1 Design parameters and status in 2015 of YBSD WWTP

项 目	原设计	新设计	2015 年
平均水量/(m³·d ⁻¹)	13 702	13 702	8 705
TSS 负荷/(kg・d ⁻¹)	_	2 585	1 644
BOD ₅ 负荷/(kg・d ⁻¹)	2 155	3 166	1 869
TKN 负荷/(kg・d ⁻¹)	_	472	299
NH ₄ - N 负荷/(kg・d ⁻¹)	_	318	202
TP 负荷/(kg・d ⁻¹)	_	107	68
最低温度/℃	9	9	9

表 2 目标出水水质

Tab. 2 Target effluent quality mg ⋅ L⁻¹

Į	页 目	年平均	月平均	周平均	日最大
TSS		_	< 10	< 10	_
BOD_5		_	< 10	< 10	_
NH ₄ ⁺ - N	3月—5月、 9月—10月	_	< 1.5	_	< 2.0
	6月—8月	_	< 1.5		< 1.6
	11 月— 次年 2 月	_	_		< 2.3
TP		< 1	_	_	_

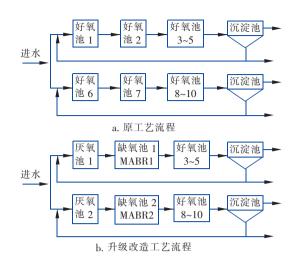


图 1 原工艺流程及 MABR 升级工艺流程

Fig. 1 Flow chart of original process and MABR upgrading process

一期工程采用 ZeeLung[™]1.0 产品,12 个膜箱分为6组以便于安装及运行(见图 2),总膜面积约为23 040 m²。该工程采用横梁悬挂式安装,安装简单,可实现不停产安装。工艺用气由独立可调控鼓风机提供,操作压力为34.5~41.4 kPa,供气量可根据污水负荷进行调整,平均供气量约为1.7 m³/min,分为6 路供给6组膜箱,尾气经在线氧气含量测定后直接排放。ZeeLung[™]1.0 产品不具备尾气回收利用装置,还需要气源进行膜箱的混合以及生物膜的控制,这部分用气由原有鼓风系统提供。因为MABR 工艺可节省总用气量,膜箱的混合及生物膜的控制用气并不影响微孔曝气的运行。

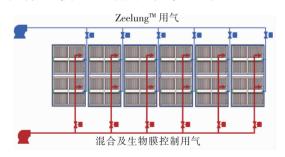


图 2 ZeeLung™膜箱运行流程

Fig. 2 Operation diagram of ZeeLungTM cassettes

一期工程拟进行 MABR 工艺(系列1)及 A²O 工艺(系列2)处理效果的对比,但由于运行期间污水水力负荷及污染物均较低而不能实现系列1与系列2的并列运行。为验证 MABR 工艺的处理效果并确保出水水质,调试运行期间(除前2个月外)的实际运行工艺流程如图3所示。另外,针对该污水

厂的进水水质特征及实际运行效果,为改善对生物膜的控制,运行9个月后对 ZeeLung[™]1.0 产品进行免费升级,升级后接近目前商业化的 ZeeLung[™]2.0 产品,只是不包括尾气回收利用装置。

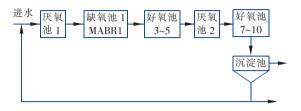


图 3 一期工程实际运行工艺流程

Fig. 3 Flow chart of actual operation process in phase I project

1.2 测试指标及方法

采集进、出水 24 h 混合样品监测与评估进、出水水质,主要测试指标包括: COD、BOD₅、TSS、VSS、TKN、NH₄⁺ - N、NO₃⁻ - N、NO₂⁻ - N、TP、磷酸盐、碱度及油脂。为评估 MABR 工艺处理效果,在缺氧池前后增设两台 24 h 自动采样器,主要测试 NH_4^+ - N、 NO_3^- - N、 NO_2^- - N、TP 及磷酸盐等。为实现远程实时监控,除常规仪器外,YBSD 污水厂还增设了氨氮及硝酸盐传感器(缺氧池前后)、ORP 传感器(厌氧池及缺氧池)、DO 传感器(缺氧池)以及氧气含量传感器(工艺尾气)。以上数据可用于计算评估工艺效果的重要指标,如传氧速率(OTR,ZeeLungTM每日氧气传输总量除以总膜面积)、硝化速率(NR,缺氧池每日氨氮去除总量除以总膜面积)。

2 结果与讨论

2.1 总体运行效果

在为期 1 年的运行中, YBSD 污水处理厂出水水质稳定,达到了表 2 所示的出水水质目标要求。在此期间,污泥浓度控制在 3 000 mg/L 左右,平均泥龄为 12 d,平均进水量为 (9 600 ± 1 300) m³/d; 主要进水指标平均值如下: COD 为(404 ± 118) mg/L,BOD₅ 为(140 ± 30) mg/L, TKN 为(31.6 ± 5.5) mg/L,NH₄⁺ – N 为(21.1 ± 5.1) mg/L,TP 为(4.7 ± 1.4) mg/L,TSS 为(179 ± 47) mg/L。

2.2 脱氮除磷效果

为验证升级后系统的脱氮除磷效果,对系统以及缺氧池的进、出水进行了短期的连续采样与氮磷指标分析,结果如图 4 与图 5 所示。在图 4 中,厌氧

池磷酸盐的浓度数据来自于对缺氧池进水水质的分析,厌氧池内的高浓度磷酸盐表明聚磷菌(PAO)在厌氧池内进行了有效的磷释放。无需化学除磷,系统出水 TP 浓度即可低于 1 mg/L,说明 PAO 在好氧池内进行了有效的磷吸收。成功的磷释放与吸收表明进水含有足够的碳源,系统运行条件也满足生物除磷的要求。ZeeLung™池的同步硝化反硝化效果如图 5 所示。总无机氮(TIN)的去除量高于氨氮的去除量,表明所有硝化生成的氨氮都经同步反硝化得以去除;由于微生物的生长还利用了部分氨氮,因此总无机氮的去除量略高于氨氮的去除量;运行期间出水 TN 低于 15 mg/L。这些数据表明,经 MABR升级改造后,系统在运行条件具备的情况下具有极佳的生物脱氮除磷效果。

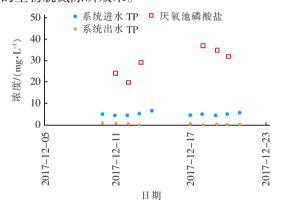


图 4 厌氧池磷的释放及系统的生物除磷效果

Fig. 4 Anaerobic phosphorus release and biological phosphorus removal effect

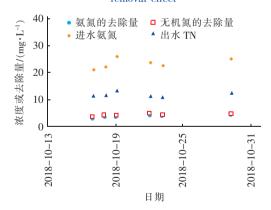


图 5 ZeeLung™池的同步硝化反硝化效果

Fig. 5 SND in ZeeLungTM tank

2.3 ZeeLung[™] MABR 传氧速率与硝化速率

尽管操作条件以及进水水质在不断变化, ZeeLung™的 OTR 与 NR 始终在预期的设计范围内 波动(见图 6),平均值分别为 12.0 和1.9 g/(m²· d)。ZeeLung[™]产品的升级对这两项指标均有改善, 尤其是对 NR 的提升效果十分显著。升级前后的 OTR 平均值分别为 11.8 和 12.1 g/(m²·d), NR 平 均值分别为 1.6 和 2.1 g/(m²·d)。升级后的 ZeeLung™对生物膜的控制更好,有利于氨氮的传 质,因而大大提高了生物膜的硝化速率。对 ZeeLung[™]生物膜的 qPCR 分析显示,生物膜中含有 高达 40% 的硝化菌。进一步分析 ZeeLung™的 OTR 与 NR 的关系发现(见图 7), ZeeLung™传输的氧气 用于硝化的比例随着硝化速率的增加而提高,当硝 化速率高于 $2.1 \text{ g/(m}^2 \cdot d)$ 时,80% 以上的氧气都 用于硝化。这一现象表明,ZeeLung™传输的氧气并 不是都用于硝化,但优先用于硝化。由此可见,经 ZeeLung™升级的系统不仅可以确保氧气的传输总 量,增加系统的处理负荷,其传输的氧气优先用于硝 化将有效提升系统的稳定性,尤其是硝化的稳定性。

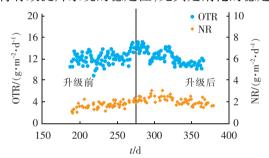


图 6 ZeeLung™的传氧速率与硝化速率

Fig. 6 OTR and NR of ZeeLungTM

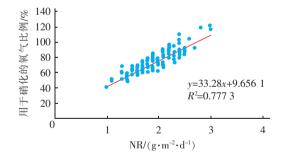


图 7 ZeeLung™用于硝化的氧气比例

Fig. 7 Oxygen percentage for nitrification in ZeeLungTM

2.4 ZeeLung[™]的硝化速率模拟及影响因素分析

多年的研究与工程应用证实,ZeeLung™具有稳定的氧气传输效率,其硝化反应速率主要受ZeeLung™池体内氨氮浓度的影响,而基本不受水体温度的影响^[3-5]。在工艺用气相同的条件下,ZeeLung™的硝化反应速率可采用以下半经验动力

学模型进行模拟[3]。

$$NR = 3.1 \times 1.007^{(T-20)} \times \frac{N}{5.7 + N}$$
 (1)

式中:T为 ZeeLungTM池内的水体温度, \mathbb{C} ;N为 ZeeLungTM池内的氨氮浓度, \mathbb{m}/L 。

利用式(1)对该工程中 ZeeLung[™]的硝化反应 速率进行模拟,结果如图 8 所示。

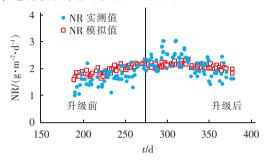


图 8 ZeeLung™硝化速率模拟结果

Fig. 8 NR simulation results of ZeeLungTM

式(1)对 ZeeLungTM产品升级前、后硝化速率的平均模拟值分别为 2.0 和 2.1 g/($m^2 \cdot d$),对比 ZeeLungTM升级前后的硝化速率实测值可知,式(1)可较好地模拟 ZeeLungTM升级后的硝化速率。在此期间,水温在 13.7 ~ 21.0 $^{\circ}$ 之间,表明 ZeeLungTM的硝化速率受温度的影响较小。这一特征将十分有利于系统在冬季低温条件下稳定运行。

从图 8 可以看出, ZeeLung[™]产品升级前硝化速率模拟值基本都高于实测值, 而在升级后初期硝化速率实测值大部分高于模拟值, 在随后的运行中硝化速率实测值分布于模拟值两侧, 模拟值略高于实测值。由此表明, ZeeLung[™]产品升级对其硝化速率有明显提高作用, 其原因在于升级后的 ZeeLung[™]对生物膜的控制及污染物尤其是氨氮的传质有明显改善, 而且在升级后的初期表现尤其明显。

3 结论

美国伊利诺斯州 YBSD 污水处理厂工程实例表明,ZeeLung™ MABR 工艺具有投资省、能耗低、处理负荷高、占地少、实施工期短、工艺稳定等优点,适用于污水处理厂的提标扩容以及新建污水处理厂。YBSD 污水处理厂为期 1 年的运行数据表明:经ZeeLung™ MABR 升级改造后,污水处理厂出水水质稳定达标;通过生物除磷即可实现出水总磷低于 1 mg/L 的目标;ZeeLung™缺氧区可实现近 100% 的同步硝化反硝化;ZeeLung™的传氧速率高且稳定,平

均传氧速率为 12.0 g/(m²·d);ZeeLung[™]的平均硝化速率为 2.1 g/(m²·d),传氧优先用于硝化反应;ZeeLung[™]的硝化速率主要受 ZeeLung[™]缺氧区氨氮浓度的影响,基本不受水温的影响。

参考文献:

- [1] Underwood A, McMains C, Coutts D, et al. Design and startup of the first full-scale membrane aerated biofilm reactor in the United States [A]. WEFTEC 2018 Proceeding [C]. New Orleans, LA; Water Environment Federation, 2018.
- [2] Houweling D, Daigger T G. Intensifying Activated Sludge Using Media-supported Biofilms [M]. Boca Raton: CRC Press, 2019.
- [3] Long Z, Oskouie A K, Kunetz T E, et al. Simulation of long-term performance of an innovative membrane-aerated biofilm reactor [J]. J Environ Eng, 2020, 146 (6): 04020041.
- [4] Sunner N, Long Z, Houweling D, et al. MABR as a low-energy compact solution for nutrient removal upgrades—results from a demonstration in the UK[A]. WEFTEC 2018 Proceeding [C]. New Orleans, LA; Water Environment Federation, 2018.
- [5] Kunetz T E, Oskouie A, Poonsapaya A, et al. Innovative membrane-aerated biofilm reactor pilot test to achieve low-energy nutrient removal at the Chicago MWRD[A]. WEFTEC 2016 Proceeding[C]. New Orleans, LA; Water Environment Federation, 2016.

作者简介:龙泽波(1972 -),男,湖南岳阳人,博士, 主任工艺工程师,主要从事污水处理新工艺 与产品的研发工作。

E - mail: zebo. long@ suez. com 收稿日期:2019 - 07 - 30