YANGChen-chen,FANChong,LIUQi,et al.Investigation and Implementation of SWMM Parameters Optimization Method in Regions without Pipeline Flow Data[J].China Water & Wastewater,2024,40(23):129-136.
无管流数据地区SWMM参数优化方法研究及应用
- Title:
- Investigation and Implementation of SWMM Parameters Optimization Method in Regions without Pipeline Flow Data
- 摘要:
- 城市雨洪模型的精确模拟是洪涝快速预报和预警的基础,而参数直接影响模型的准确性和可靠性,但目前我国现有城市雨水管网实测流量数据匮乏,给城市雨洪模型参数自动优化带来了挑战。为此,提出了RCNOA算法,以解决无管道流量数据条件下的SWMM模型参数自动优化问题,并以长沙市岳麓区东侧为典型研究区域评估其适用性。首先,采用敏感性分析方法确定了包含7个参数的优化集合;然后,利用RCNOA算法进行参数率定,确定N-Imperv、N-Perv、S-Imperv、MaxRate、MinRate、DryTime和Roughness的数值分别为0.045、0.113、1.468 mm、94.819 mm/h、14.585 mm/h、12.527 d和0.016;基于率定后的参数值,在不同降雨重现期下进行模拟,得到相应的径流系数,求得变异系数均在±5%之内,表明校准参数能满足SWMM模型对研究区域径流的模拟。该研究提出的方法可以满足无管道流量数据地区城市雨洪模型参数自动优化要求,有助于城市雨洪模型的可持续性发展,对今后城市应对暴雨洪涝事件、制定内涝防治决策具有重要指导意义。
- Abstract:
- The precise simulation of urban stormwater models serves as the foundation for rapid flood prediction and early warning. The model parameters significantly influence both accuracy and reliability. However, the scarcity of measured discharge data from urban stormwater pipe network in China poses substantial challenges to the automated optimization of these model parameters. In this study, the RCNOA algorithm was proposed to address the challenge of automatic parameter optimization for the SWMM model in the absence of pipeline flow data, and its applicability was assessed in the eastern region of Yuelu District in Changsha City. Initially, sensitivity analysis method was employed to identify the optimal set of seven parameters. Subsequently, the RCNOA algorithm was employed for parameter calibration. The parameters of N-Imperv, N-Perv, S-Imperv, MaxRate, MinRate, DryTime and Roughness were established at values of 0.045, 0.113, 1.468 mm, 94.819 mm/h, 14.585 mm/h, 12.527 d, and 0.016 respectively. Utilizing the calibrated parameter values, the corresponding runoff coefficients were simulated across various rainfall recurrence intervals, with variation coefficients consistently remaining within ±5%. This indicated that the calibration parameters were adequate for the SWMM model to effectively simulate runoff in the study area. The methodology proposed in this study will effectively address the automatic parameter optimization requirements of urban stormwater models in regions lacking pipeline flow data, thereby contributing to the sustainable development of these models. Furthermore, it has important guiding significance for cities to deal with rainstorm and flood events and make waterlogging prevention decisions in the future.
相似文献/References:
[1]孟涛,崔慧萍,郭士涛.分流制雨水管网滞留污染物的估算研究[J].中国给水排水,2020,36(9):105.
[2]陈韬,夏蒙蒙,刘云鹏,等.基于SWMM的海绵改建小区雨水径流调控研究[J].中国给水排水,2020,36(11):103.
[3]徐雷,吴正松,邵知宇,等.基于SWMM耦合模型的道路行泄通道设计方法与应用[J].中国给水排水,2021,37(1):114.
XU Lei,WU Zheng-song,SHAO Zhi-yu,et al.Design Method and Application of Roadway Drainage Path Based on Coupled Hydraulic SWMM Model[J].China Water & Wastewater,2021,37(23):114.
[4]林雪君,杜遂,戴立峰,等.基于SWMM模型的截流倍数环境效应分析[J].中国给水排水,2021,37(5):111.
LIN Xue-jun,DU Sui,DAI Li-feng,et al.Environmental Effect Analysis of Interception Ratio Based on SWMM Model[J].China Water & Wastewater,2021,37(23):111.
[5]赵月,张建丰,李涛,等.降雨径流模型的参数敏感性分析与方法比较[J].中国给水排水,2021,37(7):114.
ZHAO Yue,ZHANG Jian-feng,LI Tao,et al.Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model[J].China Water & Wastewater,2021,37(23):114.
[6]桂晗亮,张春萍,武治国,等.人工神经网络和SWMM在降雨径流模拟中的应用对比[J].中国给水排水,2021,37(13):108.
GUI Han-liang,ZHANG Chun-ping,WU Zhi-guo,et al.Comparison of Artificial Neural Network and SWMM Applied in Rainfall Runoff Simulation[J].China Water & Wastewater,2021,37(23):108.
[7]李俊奇,姜昱丞,李小静.雨水径流污染削减与源头体积控制之间的响应关系[J].中国给水排水,2021,37(15):102.
LI Jun-qi,JIANG Yu-cheng,LI Xiao-jing.Response Relationship between Stormwater Runoff Pollution Reduction and Source Volume Control[J].China Water & Wastewater,2021,37(23):102.
[8]贺娟,梁小光,温卫华,等.SWMM下渗模型算法改进研究[J].中国给水排水,2022,38(7):122.
HEJuan,LIANGXiao-guang,WENWei-hua,et al.Algorithm Improvement of SWMM Infiltration Model[J].China Water & Wastewater,2022,38(23):122.
[9]王菲菲,卿晓霞,杨森雄,等.基于PySWMM的SWMM参数自动率定研究[J].中国给水排水,2022,38(21):124.
WANGFei-fei,QINGXiao-xia,YANGSen-xiong,et al.Automatic Calibration of SWMM Parameters Based on PySWMM[J].China Water & Wastewater,2022,38(23):124.
[10]康得军,温儒杰,邱福杰,等.基于SWMM和GIS的城市内涝4D可视化研究[J].中国给水排水,2023,39(13):133.
KANGDe-jun,WENRu-jie,QIUFu-jie,et al.4D Visualization of Urban Waterlogging Based on SWMM and GIS[J].China Water & Wastewater,2023,39(23):133.