WANGYue,ZHANGYun-xia,CHANGBao-jun,et al.Design of Anaerobic Digestion Process for Kitchen Waste Utilizing a “Dry-Wet Coordination” Approach[J].China Water & Wastewater,2024,40(24):64-68.
基于“干湿协同”的厨余垃圾厌氧消化工艺设计
- Title:
- Design of Anaerobic Digestion Process for Kitchen Waste Utilizing a “Dry-Wet Coordination” Approach
- Keywords:
- kitchen waste; anaerobic digestion; synergistic effect; multivariate mixing; moderate temperature
- 摘要:
- 以安徽地区某大型厨余垃圾处理项目为例,介绍了餐厨垃圾与厨余垃圾协同厌氧消化工艺的应用情况。该工艺设计将餐厨垃圾的分选固渣与厨余垃圾滤液在湿式厌氧消化及干式厌氧消化中交叉协同处理,利用物料多元性所带来的强化效应提升总体厌氧消化效能与稳定性,其中湿式厌氧采用CSTR工艺,干式厌氧采用卧式多轴搅拌工艺。协同后湿式厌氧消化的平均单位产气率为85 m3/t,干式厌氧消化的平均单位产气率为140 m3/t,沼气中甲烷含量平均为60.50%,平均单位产气率均处于行业内较高水平。
- Abstract:
- Using the large-scale kitchen waste treatment project in Anhui Province as a case study, this paper introduces the application of a collaborative anaerobic digestion process for kitchen waste management. The process design adopts a cross-coordinated manner to treat the separation of solid residues from kitchen waste and kitchen filtrate within both wet and dry anaerobic digestion systems. This approach leverages the enhanced effects of material diversity to improve overall efficiency and stability of anaerobic digestion. The wet anaerobic digestion uses the continuous stirred tank reactor (CSTR) process, while the dry anaerobic digestion uses a horizontal multi-axis stirring process. Following collaborative efforts, the average unit gas production rate of wet anaerobic digestion is 85 m3/t, while the average unit gas production rate of dry anaerobic digestion is 140 m3/t. The average methane content in biogas is measured at 60.50%, and the average unit gas production rate remains high within industry standards.
相似文献/References:
[1]刘继伟,江燕航,艾克来木·艾合买提,等.厨余垃圾生物水解过程中氯化物的迁移转化[J].中国给水排水,2021,37(23):52.
LIU Ji-wei,JIANG Yan-hang,AIHEMAITI Aikelaimu,et al.Migration and Transformation of Chloride during Biohydrolysis of Kitchen Wastes[J].China Water & Wastewater,2021,37(24):52.
[2]刘永剑,刘宇雷,徐学信,等.超声/厌氧消化处理剩余污泥参数优化及机理研究[J].中国给水排水,2022,38(5):84.
LIUYong-jian,LIUYu-lei,XUXue-xin,et al.Parameter Optimization and Mechanism of Ultrasonic and Anaerobic Digestion for the Treatment of Excess Sludge[J].China Water & Wastewater,2022,38(24):84.
[3]赫俊国,尹诗敏,赵美花,等.铁系导电介质粒度对剩余污泥厌氧消化效能的影响[J].中国给水排水,2022,38(7):11.
HEJun-guo,YINShi-min,ZHAOMei-hua,et al.Effect of Particle Size of Iron Conducting Media on Anaerobic Digestion Efficiency of Excess Sludge[J].China Water & Wastewater,2022,38(24):11.
[4]时玉龙,鲍海鹏,李伟,等.北排清河第二再生水厂低碳运行实践[J].中国给水排水,2022,38(14):99.
SHIYu-long,BAOHai-peng,LIWei,et al.Low-carbon Operation Practice of Qinghe Ⅱ Wastewater Reclamation Plant under Beijing Drainage Group[J].China Water & Wastewater,2022,38(24):99.
[5]江丽华,卓桂华,陈细妹,等.药剂联合高温对低有机质污泥水解促进研究[J].中国给水排水,2022,38(19):86.
JIANGLi-hua,ZHUOGui-hua,CHENXi-mei,et al.Effects of Chemical Agent Combined with High Temperature on Hydrolysis of Sludge with Low Organic Content[J].China Water & Wastewater,2022,38(24):86.
[6]肖冬杰,刘李柱,李方志.某热水解+厌氧消化污泥处理工程热能浅析[J].中国给水排水,2023,39(11):122.
XIAODong-jie,LIULi-zhu,LIFang-zhi.Analysis on Thermal Energy of a Sludge Treatment Project Adopting Thermal Hydrolysis and Anaerobic Digestion Process[J].China Water & Wastewater,2023,39(24):122.
[7]崔香玉,宋秀兰.污泥中抗生素处理技术研究进展[J].中国给水排水,2023,39(12):50.
CUIXiang-yu,SONGXiu-lan.Research Progress of Antibiotic Treatment Technology in Sludge[J].China Water & Wastewater,2023,39(24):50.
[8]张涵,张含,吴宝利,等.初沉和二沉污泥经高温热水解后的厌氧消化性能[J].中国给水排水,2023,39(13):32.
ZHANGHan,ZHANGHan,WUBao-li,et al.Anaerobic Digestion Performance of Primary and Secondary Sludge after Hydrothermal Hydrolysis[J].China Water & Wastewater,2023,39(24):32.
[9]万晓,邵文歆,郭一令.COD/SO42- 对厌氧处理含硫酸盐低浓度有机废水的影响[J].中国给水排水,2023,39(21):1.
WANXiao,SHAOWen-xin,GUOYi-ling.Effect of COD/SO42- on Anaerobic Treatment of Low Concentration Organic Wastewater Containing Sulfate[J].China Water & Wastewater,2023,39(24):1.
[10]程晓格,王琬,邓冠勇,等.CaO2预处理耦合ZVI强化含油餐厨垃圾厌氧消化[J].中国给水排水,2024,40(1):90.
CHENGXiao-ge,WANGWan,DENGGuan-yong,et al.Enhanced Anaerobic Digestion of Greasy Food Waste with Calcium Peroxide Pretreatment Coupled with Zero-valent Iron[J].China Water & Wastewater,2024,40(24):90.