GAOJia-yu,LIJia-ke,LIUKe-han,et al.Research Progress on Refinement and Coupling of Storm Water Management Model (SWMM)[J].China Water & Wastewater,2025,41(4):39-48.
SWMM的模型改进和耦合应用研究进展
- Title:
- Research Progress on Refinement and Coupling of Storm Water Management Model (SWMM)
- Keywords:
- SWMM; secondary development; model improvement; model coupling
- 摘要:
- 模型模拟是城市雨洪管理领域在规划、设计、预测等方面的重要工具和手段。由于现有的城市雨洪管理模型(SWMM)在功能、精度、可视化等方面存在一定短板,难以满足工程应用的多样性和复杂性,因此对模型的改进、耦合有着迫切需求。围绕SWMM的应用现状,系统阐述了国内外研究热点;从模型机理、模型精度及模型应用三个方面分析了SWMM存在的问题,并从模型改进和耦合应用两个解决途径对国内外研究进展进行了归纳总结;最后对SWMM未来的研究方向提出展望,以期为SWMM的高效应用和功能强化提供基础,为SWMM和类似模型的二次开发提供思路。
- Abstract:
- Model simulation is an important tool for planning, design and forecasting in urban stormwater management. However, the existing Storm Water Management Model (SWMM) has certain shortcomings in terms of functionality, accuracy, visualization, and other aspects, making it difficult to meet the diverse and complex demands of engineering applications. Therefore, there is an urgent need for model improvement and coupling. This paper mainly focuses on the current application status of SWMM, and systematically reviews key research areas both domestically and internationally. Subsequently, issues are identified from three perspectives: model mechanism, model accuracy and model application. The research progress was then summarized from two approaches: model improvement and coupling application. Finally, future research directions of SWMM are proposed. This study aims to provide a foundation for the efficient application and functional enhancement of SWMM, as well as insights for the secondary development of SWMM and similar models.
相似文献/References:
[1]孟涛,崔慧萍,郭士涛.分流制雨水管网滞留污染物的估算研究[J].中国给水排水,2020,36(9):105.
[2]陈韬,夏蒙蒙,刘云鹏,等.基于SWMM的海绵改建小区雨水径流调控研究[J].中国给水排水,2020,36(11):103.
[3]徐雷,吴正松,邵知宇,等.基于SWMM耦合模型的道路行泄通道设计方法与应用[J].中国给水排水,2021,37(1):114.
XU Lei,WU Zheng-song,SHAO Zhi-yu,et al.Design Method and Application of Roadway Drainage Path Based on Coupled Hydraulic SWMM Model[J].China Water & Wastewater,2021,37(4):114.
[4]林雪君,杜遂,戴立峰,等.基于SWMM模型的截流倍数环境效应分析[J].中国给水排水,2021,37(5):111.
LIN Xue-jun,DU Sui,DAI Li-feng,et al.Environmental Effect Analysis of Interception Ratio Based on SWMM Model[J].China Water & Wastewater,2021,37(4):111.
[5]赵月,张建丰,李涛,等.降雨径流模型的参数敏感性分析与方法比较[J].中国给水排水,2021,37(7):114.
ZHAO Yue,ZHANG Jian-feng,LI Tao,et al.Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model[J].China Water & Wastewater,2021,37(4):114.
[6]桂晗亮,张春萍,武治国,等.人工神经网络和SWMM在降雨径流模拟中的应用对比[J].中国给水排水,2021,37(13):108.
GUI Han-liang,ZHANG Chun-ping,WU Zhi-guo,et al.Comparison of Artificial Neural Network and SWMM Applied in Rainfall Runoff Simulation[J].China Water & Wastewater,2021,37(4):108.
[7]李俊奇,姜昱丞,李小静.雨水径流污染削减与源头体积控制之间的响应关系[J].中国给水排水,2021,37(15):102.
LI Jun-qi,JIANG Yu-cheng,LI Xiao-jing.Response Relationship between Stormwater Runoff Pollution Reduction and Source Volume Control[J].China Water & Wastewater,2021,37(4):102.
[8]贺娟,梁小光,温卫华,等.SWMM下渗模型算法改进研究[J].中国给水排水,2022,38(7):122.
HEJuan,LIANGXiao-guang,WENWei-hua,et al.Algorithm Improvement of SWMM Infiltration Model[J].China Water & Wastewater,2022,38(4):122.
[9]王菲菲,卿晓霞,杨森雄,等.基于PySWMM的SWMM参数自动率定研究[J].中国给水排水,2022,38(21):124.
WANGFei-fei,QINGXiao-xia,YANGSen-xiong,et al.Automatic Calibration of SWMM Parameters Based on PySWMM[J].China Water & Wastewater,2022,38(4):124.
[10]康得军,温儒杰,邱福杰,等.基于SWMM和GIS的城市内涝4D可视化研究[J].中国给水排水,2023,39(13):133.
KANGDe-jun,WENRu-jie,QIUFu-jie,et al.4D Visualization of Urban Waterlogging Based on SWMM and GIS[J].China Water & Wastewater,2023,39(4):133.