LIU Chang qing,CHEN Wan,ZENG Yi fang,et al.Hydrogen Production Capacity of Semi continuous Fermentation of SARD and CSTR Bio hydrogen Production Reactor[J].China Water & Wastewater,2018,34(21):7-11.
SARD与CSTR反应器半连续发酵产氢能力对比
- Title:
- Hydrogen Production Capacity of Semi continuous Fermentation of SARD and CSTR Bio hydrogen Production Reactor
- 文章编号:
- 1000-4602(2018)21-0007-06
- Keywords:
- sludge; food waste; bio-hydrogen production; semi-continuous anaerobic rotary drum; continuous stirred tank reactor
- 分类号:
- TU992
- 文献标志码:
- A
- 摘要:
- 污泥与餐厨垃圾含有丰富有机质,将其进行生物产氢具有处理固体废弃物和开发氢能的双重意义。生物反应器的高效启动是该技术的关键因素。采用SARD和CSTR反应器并辅以血清瓶,以污泥和餐厨垃圾作为反应基质,考察不同运行时间、投配比(回流比)下的氢气浓度及比产氢速率,以确定各反应器的最佳运行条件并筛选出较优的反应器。结果表明,SARD和CSTR在10~15 h内先后达到了50.34%和53.43%的氢气浓度最大值,最大比产氢速率分别为18.09、14.98 mL/(gDS·h)。投配比为50%、进料时间间隔为8 h是较理想的进料方式。SARD与CSTR反应器半连续运行的比产氢速率在稳定阶段分别维持在4.40、2.37 mL/(gDS·h)左右。相比较而言,SARD的运行效果优于CSTR,且半连续运行比批式运行的效果更佳。
- Abstract:
- Sludge and food wastes are rich in organic matter, and can be used as the substrate of biohydrogen production, which has a double significance for solid waste treatment and development of hydrogen energy. How to start the reactor efficiently is the key factors. SARD (semicontinuous anaerobic rotary drum) and CSTR(continuous stirred tank reactor) were used as hydrogen production reactor to investigate the influence of operation time and reflux ratio by adding sludge and food wastes, and analyzing hydrogen concentration and specific hydrogen yield. The results indicated that the hydrogen concentration reached the maximum value of 50.34% and 53.43% after 10-15 h in SARD and CSTR, respectively; the maximum specific hydrogen yield was 18.09 mL/(gDS·h) and 14.98 mL/(gDS·h) respectively. The better feeding mode was 50% adding ratio and interval 8 h. The specific hydrogen yields of SARD and CSTR were stable at 4.40 mL/(gDS·h)and 2.37 mL/(gDS·h) respectively. In comparison, semicontinuous operation was better than batch one, and SARD was better than CSTR.
参考文献/References:
[1]卢文玉,刘铭辉,陈宇,等. 厌氧发酵法生物制氢的研究现状和发展前景[J]. 中国生物工程杂志,2006,26(7):99-104.
Lu Wenyu,Liu Minghui,Chen Yu,et al. Research process of 〖JP〗anaerobic fermentative hydrogen production and its development future[J]. China Biotechnology,2006,26(7):99-104(in Chinese).
[2]任南琪,李永峰,李建政,等. 中国发酵法生物制氢技术研究进展[J]. 化工学报,2004,55(S1):7-14.
Ren Nanqi,Li Yongfeng,Li Jianzheng,et al. Progress of fermentative biohydrogen production process in China[J]. Journal of Chemical Industry and Engineering,2004,55(S1):7-14(in Chinese).
[3]Liu X Y,Wang L,Li Y F,et al. The succession of microbial community in CSTR hydrogen production system[J]. Adv Mater Res,2010,113/116:1297-1301.
[4]Dinamarca C,Bakke R. Process parameters affecting the sustainability of fermentative hydrogen production:Ashortreview[J]. International Journal of Energy Environment & Economics,2011,2(6):1067-1078.
[5]Han S K,Kim S H,Shin H S. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste[J]. Process Biochem,2005,40(8):2897-2905.
[6]Wang X,Ding J,Ren N Q,et al. CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production[J]. International Journal of Hydrogen Energy,2009,34(24):9686-9695.
[7]郭强. 餐厨垃圾滚筒式发酵制氢反应器设计及运行参数调控[D]. 上海:同济大学,2007.
Guo Qiang. Design and Operation Parameters Regulation of Hydrogen Production of Food Wastes in SARD[D]. Shanghai:Tongji University,2007(in Chinese).
[8]Zhang Z P,Show K Y,Tay J H,et al. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J]. Process Biochem,2006,41
相似文献/References:
[1]颜莹莹,梁远,沙雪华,等.新冠肺炎疫情下关于减少污泥中病原体的思考[J].中国给水排水,2020,36(6):22.
[2]郭波,田瑜,范晨,等.绿色纳米铁/H2O2联用两性脱水剂调理污泥研究[J].中国给水排水,2020,36(13):62.
GUO Bo,TIAN Yu,FAN Chen,et al. Sludge Conditioning by Green Iron Nanoparticles/H2O2 Combined with Amphoteric Dewatering Agent [J].China Water & Wastewater,2020,36(21):62.
[3]许劲,范准,吕秋颖,等.山地城市污泥水热炭化产物特性研究[J].中国给水排水,2020,36(21):21.
XU Jin,FAN Zhun,L Qiu-ying,et al.Characteristics of Hydrothermal Carbonization Products of Municipal Sludge in Mountainous Cities[J].China Water & Wastewater,2020,36(21):21.
[4]李金河,张波涛,刘宝玉,等.污泥中温厌氧消化最佳温度及改善机理分析[J].中国给水排水,2021,37(3):9.
LI Jin-he,ZHANG Bo-tao,LIU Bao-yu,et al.Optimal Reaction Temperature in Mesophilic Anaerobic Digestion of Waste Activated Sludge and Its Promotion Mechanism[J].China Water & Wastewater,2021,37(21):9.
[5]王丽花,吕国钧,王飞,等.污泥干化焚烧系统的节能降耗研究[J].中国给水排水,2021,37(4):29.
WANG Li-hua,Lü Guo-jun,WANG Fei,et al.Research on Energy Saving and Consumption Reduction of Sludge Drying and Incineration System[J].China Water & Wastewater,2021,37(21):29.
[6]纪莎莎,黄瑾.污泥焚烧工程中的磷形态分布与磷迁移研究[J].中国给水排水,2021,37(5):26.
JI Sha-sha,HUANG Jin.Phosphorus Forms Distribution and Migration in Sludge Incineration Project[J].China Water & Wastewater,2021,37(21):26.
[7]马彩霞,刘蕾,李碧清,等.强化化学淋滤对污泥重金属溶出及磷释放的影响[J].中国给水排水,2021,37(5):66.
MA Cai-xia,LIU Lei,LI Bi-qing,et al.Effect of Enhanced Chemical Leaching on Heavy Metal Dissolution and Phosphorus Release from Sludge[J].China Water & Wastewater,2021,37(21):66.
[8]夏一帆,王冰洁,涂凌波,等.DMBR短程硝化反硝化处理餐厨垃圾厌氧沼液[J].中国给水排水,2021,37(7):27.
XIA Yi-fan,WANG Bing-jie,TU Ling-bo,et al.Treatment of Food Waste Digestate by DMBR with Partial Nitrification and Denitrification[J].China Water & Wastewater,2021,37(21):27.
[9]王华金.餐厨垃圾全物料湿式厌氧消化产沼技术的工程应用[J].中国给水排水,2021,37(8):95.
WANG Hua-jin.Engineering Application of Wet Anaerobic Digestion and Biogas Production Technology for Full-scale Food Waste[J].China Water & Wastewater,2021,37(21):95.
[10]李义烁,梁远,颜莹莹,等.餐厨垃圾/市政污泥/城市粪便联合厌氧消化沼液处理设计[J].中国给水排水,2021,37(14):56.
LI Yi-shuo,LIANG Yuan,YAN Ying-ying,et al.Design of Treatment Process of Biogas Slurry from Anaerobic Co-digestion of Kitchen Waste/Municipal Sludge/Urban Excrement[J].China Water & Wastewater,2021,37(21):56.
备注/Memo
基金项目:福建省科技厅重大专项(2015YZ0001-1);福建省科技厅重点项目(2018Y0022)
通信作者:赵由才E-mail:zhaoyoucai@tongji.edu.cn
作者简介:
刘常青(1970- ),女,福建闽清人,博士,副教授,主要从事固体废物处理与资源化研究。
E-mail:mylcq@126.com
收稿日期:2018-03-23