ZHAO Yue,ZHANG Jian-feng,LI Tao,et al.Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model[J].China Water & Wastewater,2021,37(7):114.
降雨径流模型的参数敏感性分析与方法比较
- Title:
- Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model
- 摘要:
- 参数的识别是决定模型模拟结果质量的主要因素,为了识别SWMM模型中12个主要参数的敏感性强弱,以西安理工大学金花校区为例,采用Morris局部敏感性分析和GULE全局敏感性分析两种方法,对SWMM模型的参数进行不确定性分析。结果表明,采用Morris局部敏感性分析方法,管道糙率与不透水率为高敏感性参数;透水区曼宁糙率、透水区洼蓄量以及Horton入渗方程相关的系数都为不敏感性参数。在GULE全局敏感性分析方法中,不透水率与管道糙率两个参数对模型的敏感性较高,其余参数均具有弱敏感性。Morris局部敏感性分析方法能够定量分析敏感性强弱,GULE全局敏感性分析方法以统计的方法定性分析可避免“唯一最优”,以上两种方法对SWMM模型的参数识别以及识别方法的选择具有参考意义。
- Abstract:
- Parameter identification is the main factor that determines the quality of the simulation results. In order to identify the sensitivity of 12 main parameters in storm water management model (SWMM) in Jinhua campus of Xi’an University of Technology, the uncertainty of parameters in SWMM was classified by Morris local sensitivity analysis method and GULE global sensitivity analysis method. The results of Morris local sensitivity analysis indicated that Con-Mann and Imperv were high sensitive parameters, while N-perv, Dstore-perv and coefficients related to Horton infiltration equation were all insensitivity parameters. The results of GULE global sensitivity analysis indicated that two parameters (Imperv and Con-Mann) had higher sensitivity to the model, and the other parameters had weak sensitivity. Morris local sensitivity analysis method can quantitatively analyze the sensitivity, while GULE global sensitivity analysis method can avoid the “only optimal” by statistical qualitative analysis. The above two methods have reference significance for parameter identification of SWMM and selection of identification methods.
相似文献/References:
[1]孟涛,崔慧萍,郭士涛.分流制雨水管网滞留污染物的估算研究[J].中国给水排水,2020,36(9):105.
[2]陈韬,夏蒙蒙,刘云鹏,等.基于SWMM的海绵改建小区雨水径流调控研究[J].中国给水排水,2020,36(11):103.
[3]徐雷,吴正松,邵知宇,等.基于SWMM耦合模型的道路行泄通道设计方法与应用[J].中国给水排水,2021,37(1):114.
XU Lei,WU Zheng-song,SHAO Zhi-yu,et al.Design Method and Application of Roadway Drainage Path Based on Coupled Hydraulic SWMM Model[J].China Water & Wastewater,2021,37(7):114.
[4]林雪君,杜遂,戴立峰,等.基于SWMM模型的截流倍数环境效应分析[J].中国给水排水,2021,37(5):111.
LIN Xue-jun,DU Sui,DAI Li-feng,et al.Environmental Effect Analysis of Interception Ratio Based on SWMM Model[J].China Water & Wastewater,2021,37(7):111.
[5]桂晗亮,张春萍,武治国,等.人工神经网络和SWMM在降雨径流模拟中的应用对比[J].中国给水排水,2021,37(13):108.
GUI Han-liang,ZHANG Chun-ping,WU Zhi-guo,et al.Comparison of Artificial Neural Network and SWMM Applied in Rainfall Runoff Simulation[J].China Water & Wastewater,2021,37(7):108.
[6]李俊奇,姜昱丞,李小静.雨水径流污染削减与源头体积控制之间的响应关系[J].中国给水排水,2021,37(15):102.
LI Jun-qi,JIANG Yu-cheng,LI Xiao-jing.Response Relationship between Stormwater Runoff Pollution Reduction and Source Volume Control[J].China Water & Wastewater,2021,37(7):102.
[7]贺娟,梁小光,温卫华,等.SWMM下渗模型算法改进研究[J].中国给水排水,2022,38(7):122.
HEJuan,LIANGXiao-guang,WENWei-hua,et al.Algorithm Improvement of SWMM Infiltration Model[J].China Water & Wastewater,2022,38(7):122.
[8]王菲菲,卿晓霞,杨森雄,等.基于PySWMM的SWMM参数自动率定研究[J].中国给水排水,2022,38(21):124.
WANGFei-fei,QINGXiao-xia,YANGSen-xiong,et al.Automatic Calibration of SWMM Parameters Based on PySWMM[J].China Water & Wastewater,2022,38(7):124.
[9]康得军,温儒杰,邱福杰,等.基于SWMM和GIS的城市内涝4D可视化研究[J].中国给水排水,2023,39(13):133.
KANGDe-jun,WENRu-jie,QIUFu-jie,et al.4D Visualization of Urban Waterlogging Based on SWMM and GIS[J].China Water & Wastewater,2023,39(7):133.
[10]康得军,邱福杰,温儒杰,等.基于SWMM的LID参数局部与全局敏感性分析[J].中国给水排水,2023,39(17):131.
KANGDe-jun,QIUFu-jie,WENRu-jie,et al.Analysis on Local and Global Sensitivity of LID Parameters Based on SWMM[J].China Water & Wastewater,2023,39(7):131.