ZHANGYa-li,HUOKe-ying,ZHOUKun,et al.Determination of Effective Specific Surface Area of Suspended Carrier by Bioassay Method[J].China Water & Wastewater,2022,38(3):29-34.
悬浮载体有效比表面积的生物法测定研究
- Title:
- Determination of Effective Specific Surface Area of Suspended Carrier by Bioassay Method
- Keywords:
- moving bed biofilm reactor (MBBR); suspended carrier; effective specific surface area; surface load; bioassay method
- 摘要:
- 悬浮载体有效比表面积(ESSA)的测定,对于准确设计悬浮载体投加量至关重要。采用生物法测定ESSA,以行业公认的K3型悬浮载体作为参比,将待测悬浮载体与K3置于相同条件下挂膜培养至稳定,通过稳定期各悬浮载体的处理性能并参比K3的表面负荷来测算ESSA。对于市面常见的6种不同类型悬浮载体,在低负荷培养条件下,符合行标产品的标号ESSA与实测值偏差不大,而非行标产品具有5.0%以上的负偏差;在高负荷培养条件下,各类产品均存在一定偏差,主要原因是生物膜增厚,挤占了有效表面积。采用生物法测定悬浮载体有效比表面积,具有准确可靠、可重现性强、结合实际水质等特点,更具有工程实际意义。对于常规的市政污水处理,低负荷下的测定结果更具备工程价值,如果条件允许,采用实际污水培养更接近工程结果;而对于高负荷进水,设计时应考虑设置安全系数,防止ESSA不足。悬浮载体的ESSA越大,应用时负荷弹性越大,可为污水厂持续提标、提量提供生物基础。新型悬浮载体的开发,应朝着ESSA更大的方向发展,需综合平衡悬浮载体流道、流化及整体形状。
- Abstract:
- The determination of effective specific surface area (ESSA) of suspended carrier is very important for accurate design of suspended carrier dosage. A bioassay method was applied to determine ESSA, and the industry-recognized K3 suspended carrier was used as a reference. The suspended carriers to be tested and K3 were placed under the same condition for biofilm attached growth until stability, and ESSA was calculated by comparing the treatment performance of each suspended carrier and the surface load of K3. For 6 different types of suspended carriers in the market, under the condition of low load, the deviation between the labeled ESSA of the products conforming to the industry standard and the measured value was small, while the negative deviation of the non?industry standard products was more than 5.0%. Under the condition of high load, all kinds of suspended carriers had certain deviation. The main reason was that the biofilm thickened and occupied the effective surface area. The bioassay method for determining the ESSA of suspended carriers has the characteristics of accuracy, reliability, strong reproducibility, combining with the actual water quality and so on, which has more engineering practical significance. For conventional municipal sewage treatment, the measurement results under low load have more engineering value. If conditions permit, the actual sewage culture is closer to the engineering results. For high load influent, safety factor should be considered in the design process to prevent the lack of ESSA. The larger the ESSA of the suspended carrier is, the greater load flexibility will be obtained during application, which can provide a microbial basis for sewage treatment plants to continuously increase the discharge standard and the treatment capacity. The development of new suspended carrier should be in the direction of pursuing a larger ESSA, and it is necessary to comprehensively balance the flow channel, fluidization and overall shape of suspended carrier.
相似文献/References:
[1]朱点钰,陈年浩,朱津苇,等.填料类型对MBBR启动及运行效能的影响[J].中国给水排水,2018,34(21):1.
ZHU Dian yu,CHEN Nian hao,ZHU Jin wei,et al.Effect of Carrier Type on Startup and Operating Efficiency of Moving Bed Biofilm Reactor[J].China Water & Wastewater,2018,34(3):1.
[2]郑临奥,吴迪,张晶晶,等.城市污水泵站改为河道生态补给站的实践总结[J].中国给水排水,2018,34(20):82.
ZHENG Lin ao,WU Di,ZHANG Jing jing,et al.Practice of River Ecological Replenishment Retrofitting from an Urban Sewage Pumping Station[J].China Water & Wastewater,2018,34(3):82.
[3]郭莉芳,朱宇峰,滕良方,等.MBBR用于南方某污水厂强化脱氮效果分析[J].中国给水排水,2020,36(7):101.
[4]周家中,吴迪,郑临奥.纯膜MBBR工艺在国内外的工程应用[J].中国给水排水,2020,36(22):37.
ZHOU Jia-zhong,WU Di,ZHENG Lin-ao.Engineering Application of Pure MBBR Process at Home and Abroad[J].China Water & Wastewater,2020,36(3):37.
[5]杨平,周家中,管勇杰,等.基于MBBR的AAO和Bardenpho工艺改造效果对比[J].中国给水排水,2021,37(7):11.
YANG Ping,ZHOU Jia-zhong,GUAN Yong-jie,et al.Comparison of AAO and Bardenpho Processes Transformation Effect Based on MBBR[J].China Water & Wastewater,2021,37(3):11.
[6]孙庆花,张晓霞,赵益华,等.天津某高盐高排放标准污水厂提标改造工程设计[J].中国给水排水,2021,37(8):83.
SUN Qing-hua,ZHANG Xiao-xia,ZHAO Yi-hua,et al.Design of a Wastewater Treatment Plant Upgrading Project with High Salinity Influent and High Discharge Standard in Tianjin[J].China Water & Wastewater,2021,37(3):83.
[7]周家中,宋平周,张爽,等.占地受限下北方某高标准新建污水厂工程设计[J].中国给水排水,2021,37(12):76.
ZHOU Jia-zhong,SONG Ping-zhou,ZHANG Shuang,et al.Engineering Design of a New High-standard Wastewater Treatment Plant with Limited Footprint Area in North China[J].China Water & Wastewater,2021,37(3):76.
[8]陈如勇,张晓霞,周家中,等.MSBR改为三级A/O-MBBR连续流工艺的应用效果[J].中国给水排水,2021,37(14):108.
CHEN Ru-yong,ZHANG Xiao-xia,ZHOU Jia-zhong,et al.Practical Application Effect of Retrofitted MSBR into Three-stage A/O-MBBR Continuous Flow Process[J].China Water & Wastewater,2021,37(3):108.
[9]王雪欣,毕学军,麻弛张,等.两点进水三段A/O-MBBR生物脱氮中试研究[J].中国给水排水,2021,37(17):62.
WANG Xue-xin,BI Xue-jun,MA Chi-zhang,et al.Nitrogen Removal of Pilot-scale Three Stages A/O-MBBR with Two-step-feed[J].China Water & Wastewater,2021,37(3):62.
[10]周小琳,樊星,毕学军,等.两段式A/O-MBBR工艺生物脱氮中试与系统优化[J].中国给水排水,2021,37(19):72.
ZHOU Xiao-lin,FAN Xing,BI Xue-jun,et al.Pilot-scale Test and System Optimization of Two-stage A/O-MBBR Process for Biological Nitrogen Removal[J].China Water & Wastewater,2021,37(3):72.