HEJun-guo,YINShi-min,ZHAOMei-hua,et al.Effect of Particle Size of Iron Conducting Media on Anaerobic Digestion Efficiency of Excess Sludge[J].China Water & Wastewater,2022,38(7):11-18.
铁系导电介质粒度对剩余污泥厌氧消化效能的影响
- Title:
- Effect of Particle Size of Iron Conducting Media on Anaerobic Digestion Efficiency of Excess Sludge
- Keywords:
- excess sludge; anaerobic digestion; conducting medium; zero-valent iron (ZVI); magnetite; particle size
- 摘要:
- 剩余污泥厌氧消化存在周期长、效率较低等问题,而铁系导电介质可通过促进种间电子传递来提高厌氧消化效能。为此,分别以零价铁粉和磁铁矿为导电介质,考察了不同粒度的导电介质对污泥厌氧消化效能的影响。结果表明,铁粉和磁铁矿的粒度变化对污泥厌氧消化效能的影响较大,而且两种导电介质促进厌氧消化的途径不同:磁铁矿可促进水解酸化过程,提供更多的产甲烷底物;而铁粉会加快水解酸化产物的消耗,从而促进产甲烷过程。随着铁粉和磁铁矿粒度的减小,沼气产量呈增加趋势,当粒度为400目时沼气产量分别达到了457.8、447.6 mL/gVSS,比空白组分别提高了16.8%、14.2%,甲烷含量比空白组分别提高了5.7%、4.4%;同时,有机物降解率的提升效果明显,有利于污泥减量化。另外,铁粉组和磁铁矿组污泥上清液的电导率比空白组有较大提升,这有利于微生物种群间电子传递效率的提升;污泥表面扫描电镜分析表明,铁粉和磁铁矿与微生物团聚紧密,可提高直接种间电子传递效率;微生物测序分析表明,铁粉和磁铁矿可以促进微生物种群多样化,在磁铁矿组Firmicutes得到富集,对水解酸化过程产生促进作用,而在铁粉组,随着铁粉粒度的减小,Methanosaeta产甲烷菌的相对丰度增加,对产甲烷阶段产生促进作用。
- Abstract:
- Anaerobic digestion of excess sludge has some problems such as long cycle time and low efficiency. Iron conducting media are capable of improving anaerobic digestion efficiency by promoting interspecific electron transfer. Therefore, the effects of two conducting media [zero-valent iron (ZVI) powder and magnetite] with different particle sizes on anaerobic digestion efficiency of excess sludge were investigated. The change of particle size of ZVI and magnetite had a great influence on sludge anaerobic digestion efficiency, and the two conducting media promoted anaerobic digestion in different ways. Magnetite promoted hydrolysis and acidification process and provided more methanogenic substrates. However, ZVI accelerated the consumption of hydrolytic acidification products, thus promoting methanogenesis. Profile of biogas yield was an increasing trend with the decrease of particle size of ZVI and magnetite. When the particle size was 400 mesh, the biogas yield reached 457.8 mL/gVSS and 447.6 mL/gVSS, respectively, which were 16.8% and 14.2% higher than that of the blank group, and the methane contents were 5.7% and 4.4% higher than that of the blank group, respectively. The organic degradation rate increased obviously, which was beneficial to sludge reduction. In addition, the conductivity of sludge supernatant in ZVI group and magnetite group was significantly higher than that in the blank group, which was conducive to the improvement of electron transfer efficiency among microbial populations. SEM analysis of sludge surface showed that the agglomeration of ZVI and magnetite with microorganisms was close, which directly improved the efficiency of direct interspecific electron transfer. The high-throughput sequencing results indicated that ZVI and magnetite promoted the diversity of microbial community. Firmicutes was enriched in the magnetite group, which promoted the hydrolysis and acidification process. In the ZVI group, the relative abundance of Methanosaeta increased with the decrease of ZVI particle size, which promoted the methane production in methanogenic stage.
相似文献/References:
[1]徐志嫱,李瑶,周爱朝,等.污泥热水解过程中磷的释放规律与影响因素[J].中国给水排水,2018,34(21):24.
XU Zhi qiang,LI Yao,ZHOU Ai chao,et al.Phosphate Release and Influencing Factors Analysis during Sludge Thermal Hydrolysis[J].China Water & Wastewater,2018,34(7):24.
[2]张彦平,呼瑞琪,李一兵,等.高铁酸盐氧化剩余污泥溶胞减量研究[J].中国给水排水,2020,36(15):59.
ZHANG Yan-ping,HU Rui-qi,LI Yi-bing,et al.Lysis and Reduction of Excess Sludge by Ferrate Oxidation[J].China Water & Wastewater,2020,36(7):59.
[3]胡德秀,张聪,张艳.超声强化污泥释磷及MAP法磷回收优化研究[J].中国给水排水,2020,36(15):65.
HU De-xiu,ZHANG Cong,ZHANG Yan.Phosphorus Release from Sludge Enhanced by Ultrasound and Optimization of Phosphorus Recovery by Magnesium Ammonium Phosphate Method[J].China Water & Wastewater,2020,36(7):65.
[4]晏习鹏,肖小兰,亓金鹏,等.中试厌氧膜生物反应器对剩余污泥的消化效果[J].中国给水排水,2020,36(19):1.
YAN Xi-peng,XIAO Xiao-lan,QI Jin-peng,et al.Digestion of Excess Sludge in a Pilot Anaerobic Membrane Bioreactor[J].China Water & Wastewater,2020,36(7):1.
[5]孙洋洋,张雨辰,徐苏云.不同来源剩余污泥有机质赋存特征及厌氧消化潜能[J].中国给水排水,2021,37(11):17.
SUN Yang-yang,ZHANG Yu-chen,XU Su-yun.Characteristics of Organic Matters in Excess Sewage Sludge from Different Sources and Their Anaerobic Digestion Potential[J].China Water & Wastewater,2021,37(7):17.
[6]朱赵冉,黄显怀,唐玉朝,等.低速搅拌球磨破解剩余污泥高效释放碳源[J].中国给水排水,2021,37(13):1.
ZHU Zhao-ran,HUANG Xian-huai,TANG Yu-chao,et al.High Efficient Release of Carbon Source from Excess Sludge Disintegrated by Low-speed Stirring and Ball-milling[J].China Water & Wastewater,2021,37(7):1.
[7]赵博玮,牛宇锟,谢飞,等.剩余污泥碳化裂解液的资源化中试研究[J].中国给水排水,2021,37(19):1.
ZHAO Bo-wei,NIU Yu-kun,XIE Fei,et al.Pilot-scale Study on Resource Recycling of Excess Sludge Carbonized Pyrolysis Liquid[J].China Water & Wastewater,2021,37(7):1.
[8]窦川川,刘玉玲,赵鹏鹤,等.碱预处理对剩余污泥DOM的溶出特征及平行因子分析[J].中国给水排水,2021,37(19):14.
DOU Chuan-chuan,LIU Yu-ling,ZHAO Peng-he,et al.Effect of Alkaline Pretreatment on DOM Dissolution Characteristics of Excess Sludge and Parallel Factor Analysis[J].China Water & Wastewater,2021,37(7):14.
[9]罗锋,彭进湖,张忠祥,等.南方污水处理厂污泥厌氧发酵制取碳源及投加策略[J].中国给水排水,2022,38(3):1.
LUO Feng,PENG Jin?hu,ZHANG Zhong-xiang,et al.Preparation of Carbon Source by Anaerobic Fermentation of Sludge in Wastewater Treatment Plant in Southern China and Its Dosing Strategy[J].China Water & Wastewater,2022,38(7):1.
[10]罗璐,施周,许仕荣,等.溶菌酶预处理对剩余污泥脱水性能的影响[J].中国给水排水,2022,38(3):87.
LUOLu,SHIZhou,XUShi-rong,et al.Effect of Lysozyme Pretreatment on Dewatering Performance of Excess Activated Sludge[J].China Water & Wastewater,2022,38(7):87.