TANXue-jun,WANGLei.Investigation and Analysis on the Treatment and Disposal Methods of Typical Sewage Treatment Plant Sludge in China’s Key River Basins[J].China Water & Wastewater,2022,38(14):1-8.
我国重点流域典型污水厂污泥处理处置方式调研与分析
- Title:
- Investigation and Analysis on the Treatment and Disposal Methods of Typical Sewage Treatment Plant Sludge in China’s Key River Basins
- 摘要:
- 调研了我国重点流域11座城市106座典型污水厂的污泥处理方式、处置途径和技术路线。结果表明,我国重点流域污泥处置方式主要包括填埋、焚烧、建材利用和土地利用。填埋所占比例为53.79%,主要与城市生活垃圾进行混合填埋;焚烧所占比例为18.31%,以电厂协同焚烧为主,单独焚烧所占比例较低;建材利用所占比例为16.08%,主要方式为制水泥和制砖;土地利用所占比例为11.01%,处置方式主要为园林绿化和土地改良。此外,基于调研探讨了我国污泥处理处置发展方向。
- Abstract:
- This work investigated the sludge treatment methods, disposal pathways and technical routes of 106 typical sewage treatment plants in 11 cities located in China’s key river basins. The results show that the disposal pathways of sludge in China’s key river basins included landfill, incineration, building materials utilization and land utilization. The proportion of landfills was 53.79%, mainly mixed landfilling with urban household waste. The proportion of incineration was 18.31%, and coordinated incineration in power plants was the main method, while the proportion of separate incineration was relatively low. The proportion of building materials utilization was 16.08%, and the main ways of sludge utilization were cement making and brick making. And the proportion of land utilization was 11.01%, while the main disposal modes were landscaping and land reclamation. In addition, the development direction of sludge treatment and disposal in China was discussed based on the investigation.
相似文献/References:
[1]袁明昕,韦海瑞,钟炜,等.BIM辅助污水处理厂协同设计及信息集成平台研究[J].中国给水排水,2022,38(16):66.
YUAN Ming-xin,WEI Hai-rui,ZHONGWei,et al.BIM Aided Collaborative Design and Information Integration Platform of Wastewater Treatment Plant[J].China Water & Wastewater,2022,38(14):66.
[2]杨逢乐,唐文景,张先智,等.洱海环湖截污治污工程的治污效果诊断与分析[J].中国给水排水,2022,38(17):21.
YANGFeng-le,TANGWen-jing,ZHANGXian-zhi,et al.Performance Diagnosis and Analysis of Sewage Interception and Treatment Project around Erhai Lake[J].China Water & Wastewater,2022,38(14):21.
[3]朴恒,王晓东,吴宇行,等.降雨对混接分流制地区污水厂进出水特征的影响[J].中国给水排水,2022,38(17):88.
PIAOHeng,WANGXiao?dong,WUYu?xing,et al.Influence of Rainfall on Influent and Effluent Characteristics of Wastewater Treatment Plants in Separate Sewer Area with Illicit Connection[J].China Water & Wastewater,2022,38(14):88.
[4]周国标,吕银忠,郑望,等.工业园区污水厂出水提至地表水Ⅴ类标准改造工程[J].中国给水排水,2022,38(18):87.
ZHOUGuo-biao,LüYin-zhong,ZHENG Wang,et al.Retrofitting Project of an Industrial Park WWTP to Meet Level Ⅴ Surface Water Standard[J].China Water & Wastewater,2022,38(14):87.
[5]陈亚松,赵铮.改良型A2/O+A/O工艺的脱氮诊断和优化调控策略[J].中国给水排水,2022,38(21):64.
CHENYa-song,ZHAOZheng.Diagnosis of Nitrogen Removal in Modified A2/O+A/O Process and Its Optimization Strategy[J].China Water & Wastewater,2022,38(14):64.
[6]赵立佳,刘涛,汪波,等.BIM及数字化用于仙居县污水处理二期EPC工程[J].中国给水排水,2022,38(22):54.
ZHAOLi-jia,LIUTao,WANGBo,et al.Application of BIM and Digitalization Technologies in Xianju County Wastewater Treatment Plant Phase Ⅱ EPC Project[J].China Water & Wastewater,2022,38(14):54.
[7]冯仕训,张万里,蒋岚岚.太湖流域8座污水处理厂新地标提标改造设计总结[J].中国给水排水,2023,39(8):61.
FENGShi-xun,ZHANGWan-li,JIANG Lan-lan.Summary of Upgrading and Reconstruction Design of Eight Wastewater Treatment Plants to Meet New Local Discharge Standard in Taihu Lake Basin[J].China Water & Wastewater,2023,39(14):61.
[8]余诚,张凯渊,王凯军,等.连续流好氧颗粒污泥技术升级现有污水处理工程[J].中国给水排水,2023,39(13):1.
YUCheng,ZHANGKai-yuan,WANGKai-jun,et al.Continuous Flow Aerobic Granular Sludge Process Upgrading a Full-scale Urban Wastewater Treatment Plant[J].China Water & Wastewater,2023,39(14):1.
[9]马九利,王伟,黄继会,等.城镇污水处理厂可调节式AAO工艺优化运行实践[J].中国给水排水,2023,39(17):70.
MAJiu-li,WANGWei,HUANGJi-hui,et al.Optimized Operation of Adjustable AAO Process in Urban Sewage Treatment Plant[J].China Water & Wastewater,2023,39(14):70.
[10]贾芳芳,吴念鹏,刘建业.北京某污水处理厂MBR换膜工程的研究及分析[J].中国给水排水,2023,39(24):127.
JIAFang-fang,WUNian-peng,LIUJian-ye.Research and Analysis on MBR Membrane Replacement Project of a WWTP in Beijing[J].China Water & Wastewater,2023,39(14):127.