ZENGMing,GUOQing-he,XUGui?da,et al.Reconstruction and Operation Analysis of WWTP in a Chemical Industry Park[J].China Water & Wastewater,2022,38(18):101-106.
化工园区综合污水厂的工程改造及运行分析
- Title:
- Reconstruction and Operation Analysis of WWTP in a Chemical Industry Park
- Keywords:
- chemical industry park; micro-electrolysis; Fenton; ozone catalytic oxidation; upgrading and reconstruction
- 摘要:
- 某以医药中间体、农药中间体、石化产业为主的化工园区综合污水处理厂原采用Biodopp生化/高效沉淀池/纤维转盘滤池工艺,设计处理规模为5 000 m3/d,出水指标仅BOD5、SS和TP能达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。针对此问题,采用微电解+芬顿+A2/O+MBBR+臭氧催化氧化+BAF工艺进行了工程改造,在保持处理规模不变的情况下,当进水COD、BOD5、SS、NH3-N、TN、TP、Cl-平均浓度分别为263.8、16.7、107.2、12.22、42.36、4.8、3 998.16 mg/L时,处理出水COD、氨氮、总氮的平均浓度分别为29.17、0.16、7.86 mg/L,去除率分别达到89.11%、98.63%、81.44%,实际出水水质优于一级A排放标准,满足污水处理厂的废水排放标准,总处理费用为4.77元/m3。
- Abstract:
- The original process of the comprehensive wastewater treatment plant (WWTP) of a chemical industrial park focusing on pharmaceutical intermediates, pesticide intermediates and petrochemical industry, is Biodopp biochemical, high efficiency sedimentation tank, and fiber rotary table filter, with a design capability of 5 000 m3/d. Only BOD5, SS and TP indexes can meet the requirements of the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). In order to solve this problem, the process of micro-electrolysis, Fenton, A2/O, MBBR, ozone catalytic oxidation, and BAF was used for reconstruction. With the original treatment capability unchanged, when the average concentrations of influent COD, BOD5, SS, NH3-N, TN, TP and Cl- are 263.8 mg/L, 16.7 mg/L,107.2 mg/L, 12.22 mg/L, 42.36 mg/L, 4.8 mg/L, 3 998.16 mg/L, respectively, the average concentrations of effluent COD, ammonia nitrogen and total nitrogen are 29.17 mg/L, 0.16 mg/L and 7.86 mg/L, and their removal rates can reach 89.11%, 98.63% and 81.44%, respectively. The effluent water quality is superior to the requirements of the first level A discharge standard, and the total cost of wastewater treatment is 4.77 yuan/m3.
相似文献/References:
[1]潘名宾,潘维龙,陈燕波,等.某大型综合化工园区污水处理厂分质提标工程设计[J].中国给水排水,2021,37(18):70.
PAN Ming-bin,PAN Wei-long,CHEN Yan-bo,et al.Design of Separate Upgrading Project of a Wastewater Treatment Plant in a Large Comprehensive Chemical Park[J].China Water & Wastewater,2021,37(18):70.
[2]曾慧卿,古志豪,王白杨,等.抗生素生产废水处理工程实例[J].中国给水排水,2022,38(6):99.
ZENG Hui-qing,GUZhi-hao,WANG Bai-yang,et al.Case Study of an Antibiotic Wastewater Treatment Project[J].China Water & Wastewater,2022,38(18):99.
[3]冯洪波,潘增锐,盛建龙,等.利用废弃铁刨花去除污水中的磷[J].中国给水排水,2022,38(7):86.
FENGHong-bo,PANZeng-rui,SHENGJian-long,et al.Reuse of Waste Iron Shavings for Phosphorus Removal from Sewage[J].China Water & Wastewater,2022,38(18):86.
[4]贾莉,傅妍芳,龚淑芬.化工园区污水处理一级A提标改造工艺及运行分析[J].中国给水排水,2022,38(20):124.
JIALi,FUYan-fang,GONGShu-fen.Analysis on First Level A Criteria Upgrading Process and Operation of Wastewater Treatment in a Chemical Industrial Park[J].China Water & Wastewater,2022,38(18):124.
[5]胡邦,杨艳坤,张鑫,等.化工园区工业污水“分类分质”处理工艺系统设计[J].中国给水排水,2023,39(6):66.
HUBang,YANGYan-kun,ZHANGXin,et al.Design of Industrial Wastewater Treatment System in Chemical Industrial Park Based on Classification and Quality[J].China Water & Wastewater,2023,39(18):66.
[6]方芳.大学校园管道直饮水系统的设计和运行效果[J].中国给水排水,2023,39(24):71.
FANGFang.Design and Operation Performance of Pipeline Direct Drinking Water System in University Campus[J].China Water & Wastewater,2023,39(18):71.
[7]周呈,周宇翔,叶阳阳,等.南通某化工园区污水处理厂降本增效分阶段改造[J].中国给水排水,2024,40(12):114.
ZHOUCheng,ZHOUYu-xiang,YEYang-yang,et al.Phased Upgrading and Reconstruction of a Chemical Industry Park WWTP in Nantong to Reduce Cost and Increase Efficiency[J].China Water & Wastewater,2024,40(18):114.