WANGXu,RENXiao-fen,LIGuang-huan,et al.Application of Absorption Heat Pump in Sludge Low?temperature Drying Process[J].China Water & Wastewater,2023,39(8):133-139.
吸收式热泵在污泥低温干化工艺中的应用
- Title:
- Application of Absorption Heat Pump in Sludge Low?temperature Drying Process
- Keywords:
- absorption heat pump; sludge; low-temperature drying
- 摘要:
- 以某处理规模为100 t/d的污泥低温干化项目为研究对象,介绍了吸收式热泵在污泥低温干化工艺中的应用。结合系统原理和现场运行工艺,探讨了该系统的热平衡模型,计算了各环节的能量分布,分析了系统的性能和经济性。结果表明,相较于传统的蒸汽圆盘式干化技术和蒸汽辅助热风带式干化技术,采用吸收式热泵结合的蒸汽污泥低温干化技术,系统单位能耗除水量可达10.9 kg水/kg标煤,分别为两种传统蒸汽干化技术的1.23倍和1.44倍。在除水量一定时,系统的标煤消耗量和CO2排放量较两种传统的蒸汽污泥干化技术分别降低18.6%和30.5%,环保效益显著。该项目实施后,单位污泥干化成本为153.3元/t,较两种传统的蒸汽污泥干化技术分别降低21.7%和31.3%,污泥减重率达77.34%,节约处理费用26.3%,经济效益明显。该项目的实施和运行对于可提供低价蒸汽(燃煤电厂或垃圾焚烧发电厂)的大型污泥低温干化项目设计与建设具有参考意义。
- Abstract:
- The application of absorption heat pump (AHP) in a 100 t/d sludge low-temperature drying project is introduced. The heat balance model of the system is discussed, the energy distribution of each link of the operating process is calculated, and the system’s performance and economy are compared and analyzed combining the system theory and process operation. The results show that the specific water extraction rate of the system can remove up to 10.9 kg water for every 1 kg standard coal consumption, which is 1.23 times and 1.44 times of the traditional steam disc drying technology and steam-assisted hot airbanddrying technology. The standard coal consumption and CO2 emissions are 18.6% and 30.5% respectively lower than the two conventional steam sludge drying technologies, which shows significant environmental benefits. It also shows significant economic benefits that the unit sludge treatment cost after the implementation of the project is 153.3 yuan/t, which is 21.7% and 31.3% lower than the two conventional steam sludge drying technologies,and the sludge weight reduction rate can reach 77.34%, which saves 26.3% of processing cost. The implementation and operation of this project can provide reference for the design and construction of large sludge drying projects that can provide low-cost steam (coal-fired power plants or waste-to-energy plants).
相似文献/References:
[1]魏尚珲,徐恒,常风民,等.农村生活污水强化膜混凝性能及其污泥资源化潜力[J].中国给水排水,2022,38(9):1.
WEIShang-hui,XUHeng,CHANGFeng-min,et al.Performance of Enhanced Membrane Coagulation for Rural Domestic Sewage Treatment and Its Sludge Resource Utilization Potential[J].China Water & Wastewater,2022,38(8):1.
[2]苑宏英,李琦,张嘉艺,等.添加蛋白质类餐厨垃圾促进污泥厌氧发酵产酸[J].中国给水排水,2022,38(17):100.
YUANHong-ying,LIQi,ZHANGJia-yi,et al.Anaerobic Fermentation of Sludge to Produce Acid Promoted by Addition of Protein Food Waste[J].China Water & Wastewater,2022,38(8):100.
[3]唐颖栋,包晗,曾学云,等.流域水环境综合整治中“泥”的治理策略研究[J].中国给水排水,2022,38(20):36.
TANGYing-dong,BAOHan,ZENGXue-yun,et al.Study on the “Sludge” Treatment Strategy for the Comprehensive Improvement of Water Environment in River Basin[J].China Water & Wastewater,2022,38(8):36.
[4]高丽娟,彭俊,王怡,等.典型BNR工艺污泥中温和高温厌氧消化特征对比[J].中国给水排水,2024,40(3):107.
GAOLi-juan,PENGJun,WANGYi,et al.Comparison of Mesophilic and Thermophilic Anaerobic Digestion Characteristics of Sludge from Typical BNR Process[J].China Water & Wastewater,2024,40(8):107.
[5]宋晓雅,张建新,张荣兵,等.北京高安屯餐厨协同污泥厌氧消化生产性试验[J].中国给水排水,2024,40(4):99.
SONGXiao-ya,ZHANGJian-xin,ZHANGRong-bing,et al.Productive Experiment of Kitchen Waste and Municipal Sludge Anaerobic Co-digestion in Beijing Gao’antun Sludge Treatment Center[J].China Water & Wastewater,2024,40(8):99.
[6]王涛,王子逸.美国污泥调查(NSSS)概况、数据分析与启示[J].中国给水排水,2024,40(8):54.
WANGTao,WANG Zi-yi.General Situation and Enlightenment of the National Sewage Sludge Survey (NSSS) in the United States[J].China Water & Wastewater,2024,40(8):54.
[7]杨亚红,马鹏锦,杨兴峰,等.沸石/超声强化污泥脱水和好氧堆肥效能研究[J].中国给水排水,2024,40(9):84.
YANGYa-hong,MA Peng-jin,YANGXing-feng,et al.Zeolite and Ultrasonic Wave for Enhancing Sludge Dewaterability and Aerobic Composting Efficiency[J].China Water & Wastewater,2024,40(8):84.
[8]杜强强,李梦琪,胡甲兴,等.污泥与皮革废料混合焚烧设计方案[J].中国给水排水,2024,40(12):78.
DUQiang-qiang,LIMeng-qi,HU Jia-xing,et al.Design Scheme of Sludge and Leather Waste Mixed Incineration[J].China Water & Wastewater,2024,40(8):78.