[1]白云,严政杰,张晋,等.基于多粒度泄漏积分回声状态网络的日供水量预测[J].中国给水排水,2023,39(9):50-56.
BAIYun,YANZheng-jie,ZHANGJin,et al.Prediction of Daily Water Supply Based on Multi-granularity Leakage Integral Echo State Network[J].China Water & Wastewater,2023,39(9):50-56.
点击复制
BAIYun,YANZheng-jie,ZHANGJin,et al.Prediction of Daily Water Supply Based on Multi-granularity Leakage Integral Echo State Network[J].China Water & Wastewater,2023,39(9):50-56.
基于多粒度泄漏积分回声状态网络的日供水量预测
中国给水排水[ISSN:1000-4062/CN:12-1073/TU]
卷:
第39卷
期数:
2023年第9期
页码:
50-56
栏目:
出版日期:
2023-05-01
- Title:
- Prediction of Daily Water Supply Based on Multi-granularity Leakage Integral Echo State Network
- Keywords:
- X11 decomposition algorithm; granularity mining; echo state network; water supply prediction
- 摘要:
- 针对多粒度因子耦合对城市日供水量产生的不确定性影响,提出一种基于多粒度挖掘与泄漏积分型回声状态网络(LiESN)的组合预测模型X11+LiESN,以提高城市日供水量预测精度。利用重庆市某水厂2018年1月1日—2020年12月31日的日供水量数据对该方法进行有效性验证。结果表明,所提出模型的平均绝对百分比误差(MAPE)为3.42%,决定系数(R2)为0.862。与单一的LiESN、极限学习机(ELM)和BP神经网络(BPNN)相比,该模型预测精确度高,能够更好地描述日供水量变化趋势,显示出了其有效性和应用潜力。
- Abstract:
- Aiming at the uncertain impact of multi-granularity factor coupling on urban daily water supply, a combined prediction model X11+LiESN based on multi-granularity mining and leakage integral echo state network (LiESN) was proposed to improve the prediction accuracy of urban daily water supply. The effectiveness of the model was verified by using daily water supply data of a water treatment plant in Chongqing from January 1, 2018 to December 31, 2020. The mean absolute percentage error (MAPE) of the proposed model was 3.42%, and the coefficient of determination (R2) was 0.862. Compared with single models of LiESN, extreme learning machine (ELM) and BP neural network(BPNN), the model exhibited higher prediction accuracy and better description of daily water supply trend, and thus showed its effectiveness and application potential.
更新日期/Last Update:
2023-05-01