KANGDe-jun,QIUFu-jie,WENRu-jie,et al.Analysis on Local and Global Sensitivity of LID Parameters Based on SWMM[J].China Water & Wastewater,2023,39(17):131-138.
基于SWMM的LID参数局部与全局敏感性分析
- Title:
- Analysis on Local and Global Sensitivity of LID Parameters Based on SWMM
- 关键词:
- SWMM; LID(低影响开发)参数; 敏感性分析; MATLAB
- Keywords:
- SWMM (storm water management model); LID (low impact development) parameters; sensitivity analysis; MATLAB
- 摘要:
- 针对SWMM模型LID(低影响开发)参数的敏感性编程分析及其取值对模拟的影响,编写了MATLAB、Visual Basic.NET代码,选用修正的Morris筛选法与多元逐步回归法,分析了福州大学晋江科教园SWMM模型透水铺装、绿色屋顶、生物滞留带29个经验参数的敏感性。结果表明,对径流总量与COD总量显著敏感的是LID利用模块参数:处理不渗透面积百分比,其是LID模拟关键参数;透水铺装参数对径流总量的敏感性与降雨强度呈负相关,绿色屋顶、生物滞留带参数对径流总量的敏感性与降雨强度呈正相关,3种LID设施参数对COD总量的敏感性较为稳定,表明LID控制模块参数对不同目标变量呈现不同的敏感性;多元逐步回归法的敏感性参数多于修正的Morris筛选法,前者能全面探究参数与目标变量的线性关系以及参数相互作用对结果的影响。
- Abstract:
- Aiming at the sensitivity programming analysis of LID (low impact development) parameters of SWMM (storm water management model) and its impact on simulation, MATLAB and Visual Basic.NET code were compiled, and the modified Morris screening method and multiple stepwise regression method were used to analyze the sensitivity of 29 empirical parameters of PP (permeable pavement), GR (green roof) and BC (bioretention cell) in the SWMM of Jinjiang Science and Education Park of Fuzhou University. The parameter that showed great sensitivity to the total runoff and COD was the LID usage module parameter: % of Impervious Area Treated, indicating that it was the key parameter for LID simulation. The sensitivity of PP parameters to total runoff decreased with the increase of rainfall intensity, but the sensitivity of GR and BC parameters to total runoff increased with the increase of rainfall intensity, and the sensitivity of the three LID parameters to the total COD was relatively stable, indicating that the LID control module parameters showed different sensitivities to different target variables. Multiple stepwise regression method showed more sensitive parameters than modified Morris screening method, indicating that the former could explore the linear relationship between parameters and target variables and the impact of parameter interaction on the results.
相似文献/References:
[1]孟涛,崔慧萍,郭士涛.分流制雨水管网滞留污染物的估算研究[J].中国给水排水,2020,36(9):105.
[2]陈韬,夏蒙蒙,刘云鹏,等.基于SWMM的海绵改建小区雨水径流调控研究[J].中国给水排水,2020,36(11):103.
[3]徐雷,吴正松,邵知宇,等.基于SWMM耦合模型的道路行泄通道设计方法与应用[J].中国给水排水,2021,37(1):114.
XU Lei,WU Zheng-song,SHAO Zhi-yu,et al.Design Method and Application of Roadway Drainage Path Based on Coupled Hydraulic SWMM Model[J].China Water & Wastewater,2021,37(17):114.
[4]林雪君,杜遂,戴立峰,等.基于SWMM模型的截流倍数环境效应分析[J].中国给水排水,2021,37(5):111.
LIN Xue-jun,DU Sui,DAI Li-feng,et al.Environmental Effect Analysis of Interception Ratio Based on SWMM Model[J].China Water & Wastewater,2021,37(17):111.
[5]赵月,张建丰,李涛,等.降雨径流模型的参数敏感性分析与方法比较[J].中国给水排水,2021,37(7):114.
ZHAO Yue,ZHANG Jian-feng,LI Tao,et al.Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model[J].China Water & Wastewater,2021,37(17):114.
[6]桂晗亮,张春萍,武治国,等.人工神经网络和SWMM在降雨径流模拟中的应用对比[J].中国给水排水,2021,37(13):108.
GUI Han-liang,ZHANG Chun-ping,WU Zhi-guo,et al.Comparison of Artificial Neural Network and SWMM Applied in Rainfall Runoff Simulation[J].China Water & Wastewater,2021,37(17):108.
[7]李俊奇,姜昱丞,李小静.雨水径流污染削减与源头体积控制之间的响应关系[J].中国给水排水,2021,37(15):102.
LI Jun-qi,JIANG Yu-cheng,LI Xiao-jing.Response Relationship between Stormwater Runoff Pollution Reduction and Source Volume Control[J].China Water & Wastewater,2021,37(17):102.
[8]贺娟,梁小光,温卫华,等.SWMM下渗模型算法改进研究[J].中国给水排水,2022,38(7):122.
HEJuan,LIANGXiao-guang,WENWei-hua,et al.Algorithm Improvement of SWMM Infiltration Model[J].China Water & Wastewater,2022,38(17):122.
[9]王菲菲,卿晓霞,杨森雄,等.基于PySWMM的SWMM参数自动率定研究[J].中国给水排水,2022,38(21):124.
WANGFei-fei,QINGXiao-xia,YANGSen-xiong,et al.Automatic Calibration of SWMM Parameters Based on PySWMM[J].China Water & Wastewater,2022,38(17):124.
[10]康得军,温儒杰,邱福杰,等.基于SWMM和GIS的城市内涝4D可视化研究[J].中国给水排水,2023,39(13):133.
KANGDe-jun,WENRu-jie,QIUFu-jie,et al.4D Visualization of Urban Waterlogging Based on SWMM and GIS[J].China Water & Wastewater,2023,39(17):133.