CHENJiong-xi,WANGQi,ZHANFan,et al.A Method for Identifying Leakage Acoustic Signals in Water Supply Network Based on CNN with MFCC[J].China Water & Wastewater,2024,40(23):13-19.
基于CNN和MFCC的供水管网漏损声信号识别方法
- Title:
- A Method for Identifying Leakage Acoustic Signals in Water Supply Network Based on CNN with MFCC
- Keywords:
- water supply network; leakage identification; acoustic signal; convolutional neural network; MFCC
- 摘要:
- 针对供水管网漏损识别效率低和对人工经验依赖性强等问题,基于卷积神经网络(CNN)和梅尔频率倒谱系数(MFCC)提出了一种供水管网漏损声信号识别方法。对噪声记录仪和水音传感器采集的漏损声信号提取MFCC及其一、二阶差分作为漏损声信号特征,得到了包含漏损特征的特征图像,将其输入到CNN模型,通过超参数优化后最终得到了漏损识别模型。结果表明,使用MFCC与MFCC的一阶差分特征参数组合作为输入特征训练模型时的识别效果最好,其测试集准确率达到95.26%,F1分数达到89.22%,具备优良的漏损识别能力。
- Abstract:
- Aiming at the problems of low efficiency and strong dependence on artificial experience in leakage identification of water supply network, a leakage acoustic signal identification method of water supply network was proposed based on convolutional neural network (CNN) and Mel frequency cepstral coefficient (MFCC). MFCC and its first- and second-order differences were extracted from the leakage sound signals collected by noise recorders and water sound sensors as leakage sound signal features. Feature images containing leakage features were obtained and input into a CNN model. After hyperparameter optimization, the leakage identification model was finally obtained. The results showed that using the combination of MFCC and its first-order differential feature parameters as input features to train the model yielded the best identification performance, with a test set accuracy of 95.26% and an F1 score of 89.22%, demonstrating excellent leakage identification ability.
相似文献/References:
[1]程伟平,陈亚威,许刚,等.基于遗传算法的供水管网爆管监控网络布置研究[J].中国给水排水,2020,36(15):46.
CHENG Wei-ping,CHEN Ya-wei,XU Gang,et al.Layout of Burst Monitoring Network in Water Distribution System Based on Genetic Algorithm[J].China Water & Wastewater,2020,36(23):46.
[2]程伟平,张邢,龙志宏,等.基于粒子源逆向追踪算法的管网污染源快速定位技术[J].中国给水排水,2020,36(19):50.
CHENG Wei-ping,ZHANG Xing,LONG Zhi-hong,et al.Rapid Pollution Source Location Technology in Water Distribution System Based on Particle Back-tracking Algorithm[J].China Water & Wastewater,2020,36(23):50.
[3]褚福敏,孙韶华,逯南南,等.供水管网中耐氯菌的分离鉴定及特性分析[J].中国给水排水,2020,36(21):42.
CHU Fu-min,SUN Shao-hua,LU Nan-nan,et al.Isolation, Identification and Characteristic Analysis of Chlorine-resistant Bacteria in Urban Water Supply Pipe Network[J].China Water & Wastewater,2020,36(23):42.
[4]吴潇勇,艾静,王圣,等.输配分离供水管网布局的构建与影响评估[J].中国给水排水,2020,36(21):53.
WU Xiao-yong,AI Jing,WANG Sheng,et al.Construction and Impact Assessment of Water Supply Network Layout with Separating Water Supply and Distribution Pipes[J].China Water & Wastewater,2020,36(23):53.
[5]苏炯恒,王琦,王礼炳,等.考虑成本–弹性–水质的供水管网多目标协同设计方法[J].中国给水排水,2020,36(21):58.
SU Jiong-heng,WANG Qi,WANG Li-bing,et al.A Multi-objective Coordinated Design Method for Water Distribution Networks Considering Cost, Resilience and Water Quality[J].China Water & Wastewater,2020,36(23):58.
[6]岳宏宇,吕谋,李红卫,等.基于群体智能优化算法的供水管网压力监测点布置[J].中国给水排水,2020,36(21):66.
YUE Hong-yu,L Mou,LI Hong-wei,et al.Arrangement of Pressure Monitoring Points in Water Supply Network Based on Swarm Intelligence Optimization Algorithm[J].China Water & Wastewater,2020,36(23):66.
[7]吉瑞博,王志红,龙志宏,等.基于风险评估的供水管网水质监测点优化模型研究[J].中国给水排水,2021,37(3):52.
JI Rui-bo,WANG Zhi-hong,LONG Zhi-hong,et al.Water Quality Monitoring Points Optimization Model for Water Supply Network Based on Risk Assessment[J].China Water & Wastewater,2021,37(23):52.
[8]杨佳莉,杜坤,陈洋,等.基于冗余选择策略差分进化的供水管网多目标优化[J].中国给水排水,2021,37(9):40.
YANG Jia-li,DU Kun,CHEN Yang,et al.Multi-objective Optimization of Water Distribution System Based on Differential Evolution of Redundant Selection Strategy[J].China Water & Wastewater,2021,37(23):40.
[9]卢慢,杜坤,宋志刚,等.基于耦合统计及模型驱动的供水管网爆管定位[J].中国给水排水,2021,37(9):46.
LU Man,DU Kun,SONG Zhi-gang,et al.Burst Location of Water Supply Pipe Network Based on Coupling Statistics and Model Driven[J].China Water & Wastewater,2021,37(23):46.
[10]龚珑聪,卓雄,许俊鸽.基于NB-IoT和DMA技术相结合的小区漏损控制分析[J].中国给水排水,2021,37(13):40.
GONG Long-cong,ZHUO Xiong,XU Jun-ge.Analysis of Leakage Management in Community Based on Combination of NB-IoT and DMA Technology[J].China Water & Wastewater,2021,37(23):40.