ZHANGQiang,XIAHai-xia,PENGYong-li,et al.Design Case of In-situ Upgrading and Reconstruction of a Large-scale Wastewater Treatment Plant in Lanzhou[J].China Water & Wastewater,2025,41(4):69-74.
兰州某大型污水厂原位提标改造工程设计实例
- Title:
- Design Case of In-situ Upgrading and Reconstruction of a Large-scale Wastewater Treatment Plant in Lanzhou
- 关键词:
- 污水处理厂; 原位改造; 提标扩容; 固定生物膜活性污泥工艺
- Keywords:
- wastewater treatment plant; in-situ reconstruction; upgrading and expansion; integrated fixed?film activated sludge (IFAS) process
- 摘要:
- 为满足强化黄河流域生态环境保护、削减污染物入河量的需求,兰州某污水处理厂需同时进行扩容提标,处理规模由26×104 m3/d扩大至30×104 m3/d,出水水质由《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级B标准提高至一级A标准。针对扩容体量大、可用土地少及排放标准严等问题,制定了提标改造决策思路;通过挖掘老旧设施潜力、利用竖向位置空间、原位耦合高负荷固定生物膜活性污泥(IFAS)工艺,形成多元处理路线。其核心在于生化处理段采用“大池型削减负荷,小池型耦合IFAS”的改造手段;泥水分离段采用“二沉池降低负荷,MBR补足空缺”的组合形式;深度处理段采用“磁混凝+回转式精密过滤器”的固液分离保障。结果表明,改造后出水COD、BOD5、NH3-N、TN、TP、SS分别为(23.2±2.9)、(5.3±2.8)、(1.7±0.9)、(9.4±3.4)、(0.2±0.1)、(4.6±2.2) mg/L,出水水质稳定且优于设计标准。
- Abstract:
- To address the imperative of enhancing ecological and environmental protection within the Yellow River basin and to mitigate the influx of pollutants into the river, a wastewater treatment plant in Lanzhou was mandated to simultaneously augment its capacity and elevate its discharge standard. Specifically, the treatment capacity should be expanded from 26×104 m3/d to 30×104 m3/d, while the effluent quality should be upgraded from the first level B limit to the first level A limit specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). Considering the challenges of substantial expansion requirements, limited available land, and stringent discharge standard, a technical decision-making route for upgrading and reconstruction was developed. By leveraging the potential of existing facilities, utilizing vertical spaces, and implementing an in-situ coupled high-load integrated fixed-film activated sludge (IFAS) process, a multi-treatment approach was established. The core of this approach lay in the transformation method of “load reduction through large tank, small tank coupled with IFAS” in the biochemical treatment section. The sludge?water separation section employed a combined approach featuring “secondary sedimentation tank to reduce the load, MBR to fill the gap”. The advanced treatment section utilized a solid-liquid separation system comprising “magnetic coagulation in conjunction with a rotary precision filter”. Following the transformation, the effluent COD, BOD5, NH3-N, TN, TP and SS were (23.2±2.9) mg/L, (5.3±2.8) mg/L, (1.7±0.9) mg/L, (9.4±3.4) mg/L, (0.2±0.1) mg/L and (4.6±2.2) mg/L, respectively. The effluent quality remains stable and is always lower than the design discharge standard.
相似文献/References:
[1]王 亮.马来西亚Pantai地埋式污水厂环网供配电结构设计[J].中国给水排水,2018,34(22):63.
WANG Liang.Power Supply and Distribution Structure Design of Ring Network for Pantai Underground Wastewater Treatment Plantin Malaysia[J].China Water & Wastewater,2018,34(4):63.
[2]侯晓庆,邓 磊,高海英,等.MBR工艺在神定河污水处理厂升级改造工程中的应用[J].中国给水排水,2018,34(22):66.
HOU Xiao-qing,DENG Lei,GAO Hai-ying,et al.Application of MBR Process in the Upgrading and Reconstruction Project of Shending River WastewaterTreatment Plant[J].China Water & Wastewater,2018,34(4):66.
[3]邱明海.北京市垡头污水处理厂改扩建工程设计技术方案[J].中国给水排水,2018,34(20):13.
QIU Ming hai.Reconstruction and Expansion Design Technical Plan of Beijing Fatou Wastewater Treatment Plant[J].China Water & Wastewater,2018,34(4):13.
[4]郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——建模与体检[J].中国给水排水,2020,36(15):23.
HAO Er-cheng,GUO Yi,LIU Wei-yan,et al.Operation Analysis of Wastewater Treatment Plant Based on Mathematical Simulation: Modeling and Examination[J].China Water & Wastewater,2020,36(4):23.
[5]张月,王阳,张宏伟,等.阳泉市污水处理二期工程BARDENPHO工艺设计和运行[J].中国给水排水,2020,36(16):64.
ZHANG Yue,WANG Yang,ZHANG Hong-wei,et al.Design and Operation of BARDENPHO Process in Phase Ⅱ Project of Yangquan Wastewater Treatment Plant[J].China Water & Wastewater,2020,36(4):64.
[6]祝新军,蔡芝斌,姚斌,等.绍兴污水处理厂气浮设备的优化改造[J].中国给水排水,2020,36(16):101.
ZHU Xin-jun,CAI Zhi-bin,YAO Bin,et al.Optimization and Modification of Air Floatation Equipment in Shaoxing Wastewater Treatment Plant[J].China Water & Wastewater,2020,36(4):101.
[7]王文明,杨淇椋,蔡依廷,等.MSBR工艺在高排放标准污水处理厂的应用[J].中国给水排水,2020,36(16):111.
WANG Wen-ming,YANG Qi-liang,CAI Yi-ting,et al.Application of MSBR Process in Wastewater Treatment Plant with Stringent Discharge Standard[J].China Water & Wastewater,2020,36(4):111.
[8]郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——控制与优化[J].中国给水排水,2020,36(17):23.
HAO Er-cheng,GUO Yi,LIU Wei-yan,et al.Operation Analysis of Wastewater Treatment Plant Based on Mathematical Simulation: Control and Optimization[J].China Water & Wastewater,2020,36(4):23.
[9]王阳,张月,王晓康,等.高排放标准下的改良AAO+深度处理工程案例[J].中国给水排水,2020,36(18):56.
WANG Yang,ZHANG Yue,WANG Xiao-kang,et al.Project Case of Modified AAO and Advanced Treatment Process under High Emission Standards[J].China Water & Wastewater,2020,36(4):56.
[10]郑枫,慕杨,孙逊.MBR工艺用于山东省某污水处理厂扩建工程[J].中国给水排水,2020,36(18):81.
ZHENG Feng,MU Yang,SUN Xun.MBR Process Used in Expansion Project of a Sewage Treatment Plant in Shandong Province[J].China Water & Wastewater,2020,36(4):81.