GAO Bo,ZHANG Lei,GUO Xiu-zhi.Process of UASB+A/O+MBR+Two-stage RO for the Treatment of Leachate from Waste Incineration Power Plant[J].China Water & Wastewater,2021,37(4):67-70.
UASB+A/O+MBR+两级RO处理垃圾焚烧发电厂渗滤液
- Title:
- Process of UASB+A/O+MBR+Two-stage RO for the Treatment of Leachate from Waste Incineration Power Plant
- Keywords:
- landfill leachate; UASB; MBR; two-stage RO
- 摘要:
- 垃圾焚烧发电厂产生的渗滤液具有污染物成分复杂、水质水量波动大、有机物和氨氮浓度高、处理难度大的特点,以国内某垃圾焚烧发电厂450 m3/d的渗滤液处理项目为例,针对垃圾焚烧发电厂渗滤液的特点,采用UASB+A/O+MBR+两级RO组合处理工艺,确保处理后出水稳定达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)。RO浓缩液采用高压管网式反渗透(STRO)减量化处理后回喷焚烧炉。近两年的工程运行结果表明,该组合工艺具有耐冲击负荷能力强、处理出水稳定达标、占地省等优点,对COD、BOD5、NH3-N、TN的平均去除率分别为99.8%、99.9%、99.0%、98.7%,渗滤液处理系统运行成本为47.05元/m3。
- Abstract:
- The leachate produced by the waste incineration power plant has the characteristics of complex pollutant composition, large fluctuations in water quality and quantity, high concentration of organic matter and ammonia nitrogen, difficult to treat. This paper takes a 450 m3/d leachate treatment project of the domestic waste incineration power plant as example. According to the characteristics of leachate from waste incineration power plants, UASB+A/O+MBR+two-stage RO combined treatment process was adopted to ensure that the effluent after treatment reached the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste (GB 16889-2008). The amount of RO concentrate was treated by high-pressure space tube RO (STRO) reduction treatment and then re-injected incinerator. The engineering operation results in the past two years have shown that the combined process had the advantages of strong impact load resistance, qualification and stability of effluent, and space saving. The average removal rates of COD, BOD5, NH3-N, and TN were 99.8%, 99.9%, 99.0% and 98.7% respectively. The operating cost of the leachate treatment system was 47.05 yuan/m3.
相似文献/References:
[1]田黎黎,蔡斌,周俊,等.处理垃圾渗滤液的纳滤膜元件损坏诊断及修复[J].中国给水排水,2018,34(21):104.
TIAN Li li,CAI Bin,ZHOU Jun,et al.Damage Diagnosis and Repair of Nanofiltration Membrane Element Treating Leachate[J].China Water & Wastewater,2018,34(4):104.
[2]王新,刘海玉,刘莉.微电解+Fenton+UASB+A/O+砂滤处理青霉素废水[J].中国给水排水,2018,34(20):92.
WANG Xin,LIU Hai yu,LIU Li.Treatment of Semi-synthetic Penicillin Wastewater by Microelectrolysis,Fenton, UASB, A/O and Sand Filtration Process[J].China Water & Wastewater,2018,34(4):92.
[3]涂保华,黄鑫,张晟,等.Fenton/生化组合工艺降解农药中间体废水苯系物[J].中国给水排水,2018,34(20):96.
TU Bao hua,HUANG Xin,ZHANG Sheng,et al.Degradation of Benzene Series in Pesticide Intermediates Wastewater by Fenton Oxidation/Biochemical Process[J].China Water & Wastewater,2018,34(4):96.
[4]刘建伟,康心悦,岳鹏,等.城市生活垃圾综合处理厂渗滤液全量化处理工程设计[J].中国给水排水,2020,36(10):70.
[5]邓觅,余郭龙,杨二奎,等.微电解+UASB+两级A/O+絮凝工艺处理医药废水[J].中国给水排水,2020,36(24):155.
DENG Mi,YU Guo-long,YANG Er-kui,et al.Pharmaceutical Production Wastewater Treatment by Micro-electrolysis, UASB, Two-stage A/O and Flocculation[J].China Water & Wastewater,2020,36(4):155.
[6]马晓伟,安浩东,朱乐辉,等.废塑料造粒洗气废水处理工程实例[J].中国给水排水,2021,37(2):90.
MA Xiao-wei,AN Hao-dong,ZHU Le-hui,et al.Project Case of Gas Washing Wastewater Treatment of Waste Plastic Granulation[J].China Water & Wastewater,2021,37(4):90.
[7]蒋宝军,刘卓驿,郭昊程,等.TiO2、Cu2O和氧化石墨烯复合氧化垃圾渗滤液效能[J].中国给水排水,2021,37(5):86.
JIANG Bao-jun,LIU Zhuo-yi,GUO Hao-cheng,et al.Combined Oxidation Efficiency of Landfill Leachate by TiO2, Cu2O and Graphene Oxide[J].China Water & Wastewater,2021,37(4):86.
[8]高峻峰,胡晓玲,宋建阳,等.BBR+Fenton氧化+BAF组合工艺处理垃圾渗滤液[J].中国给水排水,2021,37(12):151.
GAO Jun-feng,HU Xiao-ling,SONG Jian-yang,et al.Case Study on Landfill Leachate Treatment by a Combined Process of BBR System, Fenton Oxidation, and BAF[J].China Water & Wastewater,2021,37(4):151.
[9]丁西明,康建邨,闵海华,等.垃圾分类对垃圾渗滤液处理领域的影响分析[J].中国给水排水,2021,37(18):42.
DING Xi-ming,KANG Jian-cun,MIN Hai-hua,et al.Analysis on the Impact of Waste Classification on Waste Leachate Treatment[J].China Water & Wastewater,2021,37(4):42.
[10]张勇,胡群林,徐广松,等.蜂巢石对UASB反应器启动性能的影响[J].中国给水排水,2021,37(21):75.
ZHANG Yong,HU Qun-lin,XU Guang-song,et al.Effect of Pumice on Start-up of Upflow Anaerobic Sludge Blanket[J].China Water & Wastewater,2021,37(4):75.