HAOXiao-di,GUOXiao-yuan,SHIChen,et al.Advances in the Ash Dec Process for Phosphorus Recovery from Sludge Incineration Ash[J].China Water & Wastewater,2022,38(14):17-24.
污泥焚烧灰分磷回收Ash Dec工艺及其研究进展
- Title:
- Advances in the Ash Dec Process for Phosphorus Recovery from Sludge Incineration Ash
- Keywords:
- excess sludge; incineration ash; thermochemical method; Ash Dec process; phosphorus recovery; heavy metals
- 摘要:
- 地球磷危机时代已经来临,唯有发掘“第二磷矿”才能有效遏制磷的匮乏速度。剩余污泥焚烧灰分是污水的磷汇,是实施磷回收的最佳位点。因灰分中重金属含量较高,实施磷回收需要将其分离并加以利用。否则,回收磷难以与矿物磷形成竞争。比较各种灰分磷回收方法发现,热化学法中的Ash Dec工艺可利用金属氯化物实现重金属挥发分离,且可在尾气净化系统中实现重金属回收,从而同步获得具有高生物利用度的富磷相。为此,首先介绍Ash Dec工艺原理;继而讨论重金属挥发限制性因素、列举欧洲Ash Dec工艺案例以及目前法规与政策、阐述焚烧灰分作为磷肥生产原料的潜力;最后,探讨Ash Dec从尾气净化系统中回收重金属的可行性与研究现状。
- Abstract:
- The era of phosphorus crisis has appeared on the earth, and thus exploiting “the second phosphate mine” could effectively inhibit the rate of phosphorus scarcity. The incinerated ash of excess sludge is the phosphorus sink of wastewater and is also the best site for phosphorus recovery. Due to the high content of heavy metals in the ash, separation of heavy metals should be performed from the ash prior to phosphorus recovery. Otherwise, the recovered phosphorus is difficult to compete with mined phosphate. After comparing various phosphorus recovery methods from the ash, the Ash Dec process (thermochemical method) is defined as an effective one, as it can apply metal chlorides to achieve heavy metal volatilization and separation. Moreover, heavy metal recovery could be realized in the exhaust gas purification system. A phosphorus?rich phase with high bioavailability then could be obtained. In this work, discussion on Ash Dec process were performed as following: ① The principles of the Ash Dec process are first introduced. ② Factors limiting heavy metal volatilization is then discussed. ③ Engineering cases applied in Europe is listed. ④ Current directives/laws on recovered phosphorus applications is mentioned. ⑤ The potential of the ash used as a raw material for phosphate fertilizer production is elucidated. ⑥ The state?of?art research for recovering heavy metals from the exhaust gas purification system is stated.
相似文献/References:
[1]徐志嫱,李瑶,周爱朝,等.污泥热水解过程中磷的释放规律与影响因素[J].中国给水排水,2018,34(21):24.
XU Zhi qiang,LI Yao,ZHOU Ai chao,et al.Phosphate Release and Influencing Factors Analysis during Sludge Thermal Hydrolysis[J].China Water & Wastewater,2018,34(14):24.
[2]张彦平,呼瑞琪,李一兵,等.高铁酸盐氧化剩余污泥溶胞减量研究[J].中国给水排水,2020,36(15):59.
ZHANG Yan-ping,HU Rui-qi,LI Yi-bing,et al.Lysis and Reduction of Excess Sludge by Ferrate Oxidation[J].China Water & Wastewater,2020,36(14):59.
[3]胡德秀,张聪,张艳.超声强化污泥释磷及MAP法磷回收优化研究[J].中国给水排水,2020,36(15):65.
HU De-xiu,ZHANG Cong,ZHANG Yan.Phosphorus Release from Sludge Enhanced by Ultrasound and Optimization of Phosphorus Recovery by Magnesium Ammonium Phosphate Method[J].China Water & Wastewater,2020,36(14):65.
[4]晏习鹏,肖小兰,亓金鹏,等.中试厌氧膜生物反应器对剩余污泥的消化效果[J].中国给水排水,2020,36(19):1.
YAN Xi-peng,XIAO Xiao-lan,QI Jin-peng,et al.Digestion of Excess Sludge in a Pilot Anaerobic Membrane Bioreactor[J].China Water & Wastewater,2020,36(14):1.
[5]孙洋洋,张雨辰,徐苏云.不同来源剩余污泥有机质赋存特征及厌氧消化潜能[J].中国给水排水,2021,37(11):17.
SUN Yang-yang,ZHANG Yu-chen,XU Su-yun.Characteristics of Organic Matters in Excess Sewage Sludge from Different Sources and Their Anaerobic Digestion Potential[J].China Water & Wastewater,2021,37(14):17.
[6]朱赵冉,黄显怀,唐玉朝,等.低速搅拌球磨破解剩余污泥高效释放碳源[J].中国给水排水,2021,37(13):1.
ZHU Zhao-ran,HUANG Xian-huai,TANG Yu-chao,et al.High Efficient Release of Carbon Source from Excess Sludge Disintegrated by Low-speed Stirring and Ball-milling[J].China Water & Wastewater,2021,37(14):1.
[7]赵博玮,牛宇锟,谢飞,等.剩余污泥碳化裂解液的资源化中试研究[J].中国给水排水,2021,37(19):1.
ZHAO Bo-wei,NIU Yu-kun,XIE Fei,et al.Pilot-scale Study on Resource Recycling of Excess Sludge Carbonized Pyrolysis Liquid[J].China Water & Wastewater,2021,37(14):1.
[8]窦川川,刘玉玲,赵鹏鹤,等.碱预处理对剩余污泥DOM的溶出特征及平行因子分析[J].中国给水排水,2021,37(19):14.
DOU Chuan-chuan,LIU Yu-ling,ZHAO Peng-he,et al.Effect of Alkaline Pretreatment on DOM Dissolution Characteristics of Excess Sludge and Parallel Factor Analysis[J].China Water & Wastewater,2021,37(14):14.
[9]罗锋,彭进湖,张忠祥,等.南方污水处理厂污泥厌氧发酵制取碳源及投加策略[J].中国给水排水,2022,38(3):1.
LUO Feng,PENG Jin?hu,ZHANG Zhong-xiang,et al.Preparation of Carbon Source by Anaerobic Fermentation of Sludge in Wastewater Treatment Plant in Southern China and Its Dosing Strategy[J].China Water & Wastewater,2022,38(14):1.
[10]罗璐,施周,许仕荣,等.溶菌酶预处理对剩余污泥脱水性能的影响[J].中国给水排水,2022,38(3):87.
LUOLu,SHIZhou,XUShi-rong,et al.Effect of Lysozyme Pretreatment on Dewatering Performance of Excess Activated Sludge[J].China Water & Wastewater,2022,38(14):87.