ZHOUHe-xi,ZHANGJin-song,ZHANGQing-pei.Discussion on Optimization of Multi-stage AO Process in a Wastewater Treatment Plant under High Discharge Standards[J].China Water & Wastewater,2022,38(20):8-13.
多级AO工艺在某高排放标准污水厂的优化探讨
- Title:
- Discussion on Optimization of Multi-stage AO Process in a Wastewater Treatment Plant under High Discharge Standards
- Keywords:
- wastewater treatment plant; multi-stage AO process; high discharge standards; operation and management optimization
- 摘要:
- 深圳市某污水处理厂采用多级AO工艺,出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。随着城市水环境治理的深入推进,该污水厂出水水质标准需提高到《地表水环境质量标准》(GB 3838—2002)准Ⅳ类标准。近一年的运行数据表明,该厂出水COD、BOD5和SS稳定达到地表水准Ⅳ类标准,出水NH4+-N、TN和TP基本满足标准要求,达标保障率在80%以上。基于实际运行效果,结合现状构筑物提标改造潜力,提出通过优化运行管理以满足高排放标准要求。采取的优化措施主要包括精确曝气控制系统氨氮设定目标值为0.5~1 mg/L、精确进水配比为1∶1∶1或5∶3∶2、三级内回流比为50%、化学除磷药剂投加量为35~40 mg/L及生物除磷污泥龄为19.3 d。提出的措施已纳入该污水厂提标改造工程方案,用于指导下一步提标改造工作。
- Abstract:
- A multi-stage AO process was adopted in a wastewater treatment plant in Shenzhen while the effluent quality met the first level A criteria of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). With the further development of urban water environment management, the effluent discharge standards require further improvement to meet the quasi-class Ⅳ criteria of Environmental Quality Standard for Surface Water (GB 3838-2002). The operation data in the past year indicated that the effluent concentrations of COD, BOD5 and SS could meet the quasi-class Ⅳ criteria for surface water. The NH4+-N, TN and TP concentrations of the effluent could basically meet the standards, and the standard compliance rates were above 80%. This paper proposed to optimize the operation management to meet the requirements of high discharge standards based on the actual operation effect and combined with the potential of the existing facilities. Specific optimized measures were as follows: the target values of ammonia in the precise aeration control system were set at 0.5-1 mg/L; the influent distribution ratio was 1∶1∶1/5∶3∶2 by precise measurement; the internal reflux ratio of the third stage was 50%; the dosages of chemical phosphorous removal were 35-40 mg/L; the sludge retention time of biological phosphorous removal was 19.3 d. The measures have been taken into project scheme for upgrading the wastewater treatment plant, which will guide the next upgrading work.
相似文献/References:
[1]王 亮.马来西亚Pantai地埋式污水厂环网供配电结构设计[J].中国给水排水,2018,34(22):63.
WANG Liang.Power Supply and Distribution Structure Design of Ring Network for Pantai Underground Wastewater Treatment Plantin Malaysia[J].China Water & Wastewater,2018,34(20):63.
[2]侯晓庆,邓 磊,高海英,等.MBR工艺在神定河污水处理厂升级改造工程中的应用[J].中国给水排水,2018,34(22):66.
HOU Xiao-qing,DENG Lei,GAO Hai-ying,et al.Application of MBR Process in the Upgrading and Reconstruction Project of Shending River WastewaterTreatment Plant[J].China Water & Wastewater,2018,34(20):66.
[3]邱明海.北京市垡头污水处理厂改扩建工程设计技术方案[J].中国给水排水,2018,34(20):13.
QIU Ming hai.Reconstruction and Expansion Design Technical Plan of Beijing Fatou Wastewater Treatment Plant[J].China Water & Wastewater,2018,34(20):13.
[4]郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——建模与体检[J].中国给水排水,2020,36(15):23.
HAO Er-cheng,GUO Yi,LIU Wei-yan,et al.Operation Analysis of Wastewater Treatment Plant Based on Mathematical Simulation: Modeling and Examination[J].China Water & Wastewater,2020,36(20):23.
[5]张月,王阳,张宏伟,等.阳泉市污水处理二期工程BARDENPHO工艺设计和运行[J].中国给水排水,2020,36(16):64.
ZHANG Yue,WANG Yang,ZHANG Hong-wei,et al.Design and Operation of BARDENPHO Process in Phase Ⅱ Project of Yangquan Wastewater Treatment Plant[J].China Water & Wastewater,2020,36(20):64.
[6]祝新军,蔡芝斌,姚斌,等.绍兴污水处理厂气浮设备的优化改造[J].中国给水排水,2020,36(16):101.
ZHU Xin-jun,CAI Zhi-bin,YAO Bin,et al.Optimization and Modification of Air Floatation Equipment in Shaoxing Wastewater Treatment Plant[J].China Water & Wastewater,2020,36(20):101.
[7]王文明,杨淇椋,蔡依廷,等.MSBR工艺在高排放标准污水处理厂的应用[J].中国给水排水,2020,36(16):111.
WANG Wen-ming,YANG Qi-liang,CAI Yi-ting,et al.Application of MSBR Process in Wastewater Treatment Plant with Stringent Discharge Standard[J].China Water & Wastewater,2020,36(20):111.
[8]郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——控制与优化[J].中国给水排水,2020,36(17):23.
HAO Er-cheng,GUO Yi,LIU Wei-yan,et al.Operation Analysis of Wastewater Treatment Plant Based on Mathematical Simulation: Control and Optimization[J].China Water & Wastewater,2020,36(20):23.
[9]王阳,张月,王晓康,等.高排放标准下的改良AAO+深度处理工程案例[J].中国给水排水,2020,36(18):56.
WANG Yang,ZHANG Yue,WANG Xiao-kang,et al.Project Case of Modified AAO and Advanced Treatment Process under High Emission Standards[J].China Water & Wastewater,2020,36(20):56.
[10]郑枫,慕杨,孙逊.MBR工艺用于山东省某污水处理厂扩建工程[J].中国给水排水,2020,36(18):81.
ZHENG Feng,MU Yang,SUN Xun.MBR Process Used in Expansion Project of a Sewage Treatment Plant in Shandong Province[J].China Water & Wastewater,2020,36(20):81.