WANGFei-fei,QINGXiao-xia,YANGSen-xiong,et al.Automatic Calibration of SWMM Parameters Based on PySWMM[J].China Water & Wastewater,2022,38(21):124-130.
基于PySWMM的SWMM参数自动率定研究
- Title:
- Automatic Calibration of SWMM Parameters Based on PySWMM
- Keywords:
- SWMM; automatic calibration; PySWMM; urban rainfall runoff simulation
- 摘要:
- 针对SWMM原始动态链接库缺乏相关应用接口函数和优化模块无法进行参数自动率定的问题,提出了一种基于PySWMM并耦合遗传算法的SWMM参数自动率定模型,并以重庆悦来新城为研究对象,选取36场独立降雨事件对SWMM进行校准和评估。结果表明,雨型特征对模型的模拟性能有较大影响;校准后的模型对不同雨型的降雨过程均有良好的适应能力,决定系数R2达到了0.79以上,对发生频率较高的单峰靠前(Ⅰ型)降雨事件的模拟效果最好,其纳什效率系数(NSE)值达到0.90,峰值相对误差(PE)仅为-0.07。
- Abstract:
- The SWMM original dynamic link library is lack of relevant application programming interface functions, and the parameter optimization module is unable to perform automatic parameter calibration. Therefore, a model for automatic calibration of SWMM parameters based on PySWMM coupled with genetic algorithm was proposed, and it was calibrated and evaluated by 36 independent rainfall events in Yuelai New Town, Chongqing. Characteristics of rain fall type had great influence on the simulation performance of the model. The calibrated model had good adaptability to the rainfall process of different rainfall types, and the determination coefficient R2 was more than 0.79. The best simulation performance was achieved for the rainfall event with high frequency and single peak forward (type Ⅰ), the Nash-Sutcliffe efficiency coefficient (NSE) reached 0.90, and the peak relative error (PE) was only -0.07.
相似文献/References:
[1]孟涛,崔慧萍,郭士涛.分流制雨水管网滞留污染物的估算研究[J].中国给水排水,2020,36(9):105.
[2]陈韬,夏蒙蒙,刘云鹏,等.基于SWMM的海绵改建小区雨水径流调控研究[J].中国给水排水,2020,36(11):103.
[3]徐雷,吴正松,邵知宇,等.基于SWMM耦合模型的道路行泄通道设计方法与应用[J].中国给水排水,2021,37(1):114.
XU Lei,WU Zheng-song,SHAO Zhi-yu,et al.Design Method and Application of Roadway Drainage Path Based on Coupled Hydraulic SWMM Model[J].China Water & Wastewater,2021,37(21):114.
[4]林雪君,杜遂,戴立峰,等.基于SWMM模型的截流倍数环境效应分析[J].中国给水排水,2021,37(5):111.
LIN Xue-jun,DU Sui,DAI Li-feng,et al.Environmental Effect Analysis of Interception Ratio Based on SWMM Model[J].China Water & Wastewater,2021,37(21):111.
[5]赵月,张建丰,李涛,等.降雨径流模型的参数敏感性分析与方法比较[J].中国给水排水,2021,37(7):114.
ZHAO Yue,ZHANG Jian-feng,LI Tao,et al.Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model[J].China Water & Wastewater,2021,37(21):114.
[6]桂晗亮,张春萍,武治国,等.人工神经网络和SWMM在降雨径流模拟中的应用对比[J].中国给水排水,2021,37(13):108.
GUI Han-liang,ZHANG Chun-ping,WU Zhi-guo,et al.Comparison of Artificial Neural Network and SWMM Applied in Rainfall Runoff Simulation[J].China Water & Wastewater,2021,37(21):108.
[7]李俊奇,姜昱丞,李小静.雨水径流污染削减与源头体积控制之间的响应关系[J].中国给水排水,2021,37(15):102.
LI Jun-qi,JIANG Yu-cheng,LI Xiao-jing.Response Relationship between Stormwater Runoff Pollution Reduction and Source Volume Control[J].China Water & Wastewater,2021,37(21):102.
[8]贺娟,梁小光,温卫华,等.SWMM下渗模型算法改进研究[J].中国给水排水,2022,38(7):122.
HEJuan,LIANGXiao-guang,WENWei-hua,et al.Algorithm Improvement of SWMM Infiltration Model[J].China Water & Wastewater,2022,38(21):122.
[9]康得军,温儒杰,邱福杰,等.基于SWMM和GIS的城市内涝4D可视化研究[J].中国给水排水,2023,39(13):133.
KANGDe-jun,WENRu-jie,QIUFu-jie,et al.4D Visualization of Urban Waterlogging Based on SWMM and GIS[J].China Water & Wastewater,2023,39(21):133.
[10]康得军,邱福杰,温儒杰,等.基于SWMM的LID参数局部与全局敏感性分析[J].中国给水排水,2023,39(17):131.
KANGDe-jun,QIUFu-jie,WENRu-jie,et al.Analysis on Local and Global Sensitivity of LID Parameters Based on SWMM[J].China Water & Wastewater,2023,39(21):131.