SHIHui-ting,DENGLiang,YELin-xiong,et al.Influence Factors of Immersed Ultrafiltration Membrane Backwash for Algae-laden Water Treatment[J].China Water & Wastewater,2023,39(7):50-56.
浸没式超滤膜处理高藻水的反冲洗影响因素研究
- Title:
- Influence Factors of Immersed Ultrafiltration Membrane Backwash for Algae-laden Water Treatment
- 摘要:
- 污染是制约浸没式超滤膜高效处理高藻水的关键,合理优化超滤反冲洗策略有助于改善系统整体运行性能。为此,采用截留分子质量为150~300 ku的超滤膜过滤高藻水,探究不同反冲洗方式及排空周期等条件下跨膜压差的变化情况。结果表明,单独气洗在控制跨膜压差增长方面比单独水洗表现得更好;气洗强度越大,跨膜压差的增长速度越慢,当气洗强度为60 m3/(m2·h)时对跨膜压差的控制效果最佳。增加反冲洗强度可能会加剧藻细胞的破裂,造成膜池中蛋白质类物质和溶解性微生物代谢产物的增加。增加膜池排空周期可减缓跨膜压差的增长,当排空周期为12 h时对跨膜压差的控制效果最优。低强度的气水联合冲洗一定程度上能够有效缓解膜污染,这可能与膜表面黏附的污垢减少以及膜池中颗粒物的尺寸增大有关。
- Abstract:
- Membrane fouling is the bottleneck that restricts immersed ultrafiltration membrane for efficient treatment of algae?laden water. Optimization of ultrafiltration backwash strategy is helpful to improve the overall operational performance of the system. Therefore, this paper used the ultrafiltration membrane with the interception molecular weight of 150-300 ku to treat algae-laden water, and investigated the change of transmembrane pressure under different backwash strategies and emptying cycle. Air backwash alone performed better than hydraulic backwash alone in controlling the increase of transmembrane pressure. Higher air backwash intensity resulted in slower increasing rate of the transmembrane pressure. When the air backwash intensity was 60 m3/(m2·h), the best transmembrane pressure control performance was achieved. Increasing the backwash intensity might aggravate the breakage of algal cells, resulting in increased concentrations of protein-like substances and soluble microbial products in the membrane tank. The increase of the membrane tank emptying cycle slowed down the increase of the transmembrane pressure, and the optimal control performance was achieved when the emptying cycle was 12 hours. The low-intensity combined air and water backwash effectively alleviated membrane fouling to some extent, which might be related to the reduction of fouling scale on the membrane surface and the increase of particulate size in the membrane tank.
相似文献/References:
[1]杨斐,刘宏远,朱海涛,等.强化组合超滤技术处理污染水源水[J].中国给水排水,2020,36(7):42.
[2]王慧文,陈卫,陶辉.预氧化/超滤组合除锰工艺的膜污染特性[J].中国给水排水,2020,36(9):22.
[3]王小兵,游浩荣,叶元柳,等.PAC/UF工艺处理微污染水源水的膜污染特性[J].中国给水排水,2020,36(11):27.
[4]高倩,张崇淼,魏样,等.饮用水超滤处理中的膜污染及减缓技术研究进展[J].中国给水排水,2020,36(18):13.
GAO Qian,ZHANG Chong-miao,WEI Yang,et al.Research Progress of Membrane Fouling and Mitigation Techniques in Ultrafiltration Treatment of Drinking Water[J].China Water & Wastewater,2020,36(7):13.
[5]刘建林,谢杰.膜芬顿技术在污水深度处理中的应用[J].中国给水排水,2020,36(22):145.
LIU Jian-lin,XIE Jie.Application of Membrane Fenton Coupling Technology in Wastewater Advanced Treatment[J].China Water & Wastewater,2020,36(7):145.
[6]苏菲,李英华,李海波,等.电絮凝/氧化—超滤协同去除水中NOM的研究[J].中国给水排水,2020,36(23):31.
SU Fei,LI Ying-hua,LI Hai-bo,et al.Removal of Natural Organic Matter by Electro-coagulation/Oxidation-Ultrafiltration Technology[J].China Water & Wastewater,2020,36(7):31.
[7]王金龙.再生水厂UF-RO双膜工艺的设计探讨及优化改进[J].中国给水排水,2020,36(24):120.
WANG Jin-long.Discussion and Improvement on Design of UF and RO Process in a Water Reclamation Plant[J].China Water & Wastewater,2020,36(7):120.
[8]何林娟,邹康兵,盛云鸽,等.预处理对东江原水超滤过程中膜污染的控制作用[J].中国给水排水,2021,37(1):16.
HE Lin-juan,ZOU Kang-bing,SHENG Yun-ge,et al.Control Effect of Pretreatment on Membrane Fouling during Ultrafiltration of Dongjiang River Raw Water[J].China Water & Wastewater,2021,37(7):16.
[9]于海宽,李星,周志伟,等.大型超滤水厂PVC和PVDF膜运行特性差异与优化[J].中国给水排水,2021,37(1):28.
YU Hai-kuan,LI Xing,ZHOU Zhi-wei,et al.Operation Characteristics and Optimization of PVC and PVDF Membranes in Full-scale Ultrafiltration Drinking Water Treatment Plant[J].China Water & Wastewater,2021,37(7):28.
[10]郑利祥,郭中权,毛维东.矿井水处理聚合氯化铝残留物对超滤膜污染的影响[J].中国给水排水,2021,37(1):51.
ZHENG Li-xiang,GUO Zhong-quan,MAO Wei-dong.Influence of Polyaluminium Chloride Residue on Ultrafiltration Membrane Fouling in Mine Water Treatment[J].China Water & Wastewater,2021,37(7):51.