HEShan-shan,YUXin-lei,CHENHong-fang,et al.Comparison of Greenhouse Gas (GHG) Emission Characteristics of Sludge Treatment and Disposal Technologies of Wastewater Treatment Plants in Wuhan[J].China Water & Wastewater,2025,41(10):35-41.
武汉市污水厂污泥处理处置技术碳排放特征对比
- Title:
- Comparison of Greenhouse Gas (GHG) Emission Characteristics of Sludge Treatment and Disposal Technologies of Wastewater Treatment Plants in Wuhan
- Keywords:
- sludge treatment and disposal; GHG emissions; land utilization; building material utilization; incineration utilization
- 摘要:
- 以武汉市污泥处理处置工程为基础,梳理了15条不同污泥处理处置路线(土地利用4条、建材利用6条、焚烧利用5条)的碳排放量。研究表明,土地利用碳排放量为366.6~629.5 kgCO2/tDS、焚烧利用为674.2~1 418.7 kgCO2/tDS、建材利用为906~2 724.9 kgCO2/tDS;土地利用技术路线中,采用离心脱水方式可使碳排放量降低102 kgCO2/tDS,约占净碳排放量的19.33%;建材利用技术路线中,采用板框脱水方式可使碳排放量降低974.5~1 772.3 kgCO2/tDS,占净碳排放量的101.8%~186.0%;焚烧利用技术路线中,采用板框脱水-热干化工艺可使碳排放量降低184.9 ~239.2 kgCO2/tDS,占净碳排放量的25.38%~35.48%。此外,研究还表明,土地利用方式中,肥料产品利用和厌氧消化环节的碳排放量分别占净碳排放量的32.18%~69.06%和107.80%;建材利用过程中,煅烧环节碳排放量占净碳排放量的60.99%~97.84%;焚烧利用方式中,板框脱水碳排放量占净碳排放量的50.71%~54.79%;这些环节碳排放量较高,是碳减排重点。
- Abstract:
- The greenhouse gas (GHG) emissions of 15 different sludge treatment and disposal pathways were summarized based on the sludge treatment and disposal projects in Wuhan, including 4 for landfill, 6 for building materials utilization, and 5 for incineration utilization. The GHG emissions of each technology pathway are as follows: 366.7-629.5 kgCO2/tDS for land utilization technical routes, 674.6-1 418.7 kgCO2/tDS for incineration utilization technical routes, 906-2 724.9 kgCO2/tDS for building material utilization technical routes. Using centrifugal dewatering can reduce 19.33% of net GHG emissions, which is equivalent to 102 kgCO2/tDS in land utilization technical routes. Frame dewatering can reduce 101.8%-186.0% of net GHG emissions, resulting in 974.5-1 772.3 kgCO2/tDS in building material utilization technical routes. Using frame dewatering and thermal drying can reduce 25.38%-35.48% of net GHG emissions, nearly 184.9-239.2 kgCO2/tDS in incineration technical routes. Moreover, the study results reveal that certain processes for sludge treatment and disposal contribute significantly to GHG emissions, including the utilization of fertilizer products and anaerobic digestion in the land utilization technical routes (contributing 32.18% to 69.06% and 107.80% of the net GHG emissions), the calcination stage in the building material utilization technical routes (contributing 60.99% to 97.84% of the net GHG emissions), and frame dewatering in the incineration utilization technical routes (contributing 50.71% to 54.79% of the net GHG emissions). These are the key emission reduction links.
相似文献/References:
[1]郭恰.IPCC污泥碳排放核算模型中DOC取值的不足与修正[J].中国给水排水,2020,36(16):49.
GUO Qia.Lack and Correction of DOC Value in IPCC Calculation Model of Sludge Carbon Emission[J].China Water & Wastewater,2020,36(10):49.
[2]许劲,徐军,吕秋颖,等.水热碳化技术用于污泥处理处置前景分析[J].中国给水排水,2020,36(16):54.
XU Jin,XU Jun,LQiu-ying,et al.Perspectives on Hydrothermal Carbonization Technology for Municipal Sludge Treatment and Disposal[J].China Water & Wastewater,2020,36(10):54.
[3]李尔,曾祥英.武汉市主城区污水厂污泥处理处置现状及展望[J].中国给水排水,2021,37(18):8.
LI Er,ZENG Xiang-ying.Current Situation and Prospect of Sludge Treatment and Disposal of WWTPs in the Main Urban Area of Wuhan[J].China Water & Wastewater,2021,37(10):8.
[4]宋晓雅.集中式污泥处理中心的建设与思考[J].中国给水排水,2021,37(20):22.
SONG Xiao-ya.Construction and Thinking of Centralized Sludge Treatment Center[J].China Water & Wastewater,2021,37(10):22.
[5]李雪怡,梁远,方小锋,等.北京市污泥处理处置现状总结分析[J].中国给水排水,2021,37(22):38.
LI Xue-yi,LIANG Yuan,FANG Xiao-feng,et al.Summarization and Analysis of Sludge Treatment and Disposal in Beijing[J].China Water & Wastewater,2021,37(10):38.
[6]许谦,蒋才芳,何志健,等.南宁市污泥处理处置工艺分析及展望[J].中国给水排水,2023,39(10):31.
XUQian,JIANGCai-fang,HEZhi-jian,et al.Analysis and Prospect of Urban Sludge Treatment and Disposal Process in Nanning City[J].China Water & Wastewater,2023,39(10):31.
[7]黄青,杨平,杨忠启,等.MBBR和MBR工艺的污水处理效果与碳排放分析[J].中国给水排水,2023,39(16):99.
HUANGQing,YANGPing,YANGZhong-qi,et al.Analysis on the Engineering Effect and Carbon Emission of MBBR and MBR Processes for Treating Sewage[J].China Water & Wastewater,2023,39(10):99.
[8]胡方旭,卢亚静,周星,等.典型老城区海绵城市建设碳减排效益评估[J].中国给水排水,2024,40(3):130.
HUFang-xu,LUYa-jing,ZHOUXing,et al.Assessment of Carbon Emission Reduction Benefits of Sponge City Construction in Typical Old District[J].China Water & Wastewater,2024,40(10):130.
[9]吴宝利,李鹏峰,张岳,等.污水处理系统碳排放影响因素及降碳策略研究[J].中国给水排水,2024,40(12):1.
WU Bao-li,LIPeng-feng,ZHANGYue,et al.Research on Influencing Factors and Carbon Reduction Strategies of Sewage Treatment System[J].China Water & Wastewater,2024,40(10):1.
[10]蒋富海,李俊奇,张显忠,等.城镇污水处理厂治污降碳的精细化管控研究[J].中国给水排水,2024,40(12):13.
JIANGFu-hai,LIJun-qi,ZHANGXian-zhong,et al.Fine Management & Control of Pollution Control and Carbon Reduction in the Urban WWTPs[J].China Water & Wastewater,2024,40(10):13.