ZHAO Xin-juan,LIU Bo-yi.Application of Short Process Ultrafiltration Membrane in Lingzhuang Waterworks[J].China Water & Wastewater,2021,37(10):71-74.
短流程超滤膜工艺在凌庄水厂的应用
- Title:
- Application of Short Process Ultrafiltration Membrane in Lingzhuang Waterworks
- 关键词:
- 自来水厂; 压力式膜处理工艺; 上向流炭吸附反应澄清池
- Keywords:
- waterworks; pressure membrane process; PULSAZUR
- 摘要:
- 天津市凌庄水厂现有净水系统设计规模为50×104 m3/d,处理工艺为反应沉淀+普通快滤池,为了达到出厂水量和水质要求,亟需改造。通过对各种沉淀澄清池进行技术经济比较,对国内外大型水厂膜组合工艺进行分析对比,以及邀请多家超滤膜公司进行中试,确定了凌庄水厂新建净水系统(30×104 m3/d)采用预处理、PULSAZUR上向流炭吸附反应澄清池与压力式超滤膜短流程处理工艺。该工艺可有效应对以南水北调中线原水为主水源、引滦原水为备用水源的原水水质。该净水系统较国内已建成压力式超滤膜工艺缩短了工艺流程、降低了建设投资,且可根据原水水质确定预氧化剂和粉末活性炭的投加,从而降低运行成本。实际运行表明,该工艺可以保证出厂水浊度<0.1 NTU,耗氧量<2 mg/L,有效保障了出厂水的化学安全性和生物安全性。
- Abstract:
- The present treatment capacity of Tianjin Lingzhuang waterworks is 50×104 m3/d, and the treatment process includes reactive precipitation and conventional rapid filter. In order to meet the requirements of quantity and quality of product water, Lingzhuang waterworks is in urgent need of renovation. Through technical and economic comparison of various sedimentation tanks and clarifiers, analysis and comparison of combined membrane processes in large waterworks at home and abroad, and pilot tests carried out by many ultrafiltration (UF) membrane companies, the process of pretreatment, PULSAZURand pressure short process UF membrane was determined to be the newly-built purification system (30×104 m3/d) in Lingzhuang waterworks. This process could effectively deal with the raw water from Middle Route of the South-to-North Water Diversion as the main water source and the raw water from Luanhe River as the alternate water source. Compared with the existing domestic pressure ultrafiltration membrane waterworks, the new system shortened the process flow and reduced the construction investment. In addition, the combined process could determine the dosage of pre-oxidant and powder activated carbon (PAC) by analyzing the raw water quality, which could significantly decrease the operational cost. According to the practical operation data, turbidity and CODMn in product water of the combined process were always less than 0.1 NTU and 2 mg/L, respectively, indicating that the combined process can effectively ensure the chemical and biological safety of the product water.
相似文献/References:
[1]黄仲均,刘佳伟.基于一体化净水装置的自来水厂改造扩能案例分析[J].中国给水排水,2018,34(22):82.
HUANG Zhong-jun,LIU Jia-wei.Reconstruction and Expansion Design of Waterworks Based on Integrated Water Purification Device[J].China Water & Wastewater,2018,34(10):82.
[2]刘彦华,苏锡波,高迎亮,等.城镇自来水厂平流沉淀池改造技术与实践[J].中国给水排水,2020,36(14):131.
LIU Yan-hua,SU Xi-bo,GAO Ying-liang,et al.Renovation Technology and Practice of Horizontal Flow Sedimentation Tank in Urban Waterworks[J].China Water & Wastewater,2020,36(10):131.
[3]李丰庆.我国超大超滤水厂——广州北部水厂工艺设计[J].中国给水排水,2021,37(10):66.
LI Feng-qing.Process Design of the Super Large Ultrafiltration Waterworks in China: Guangzhou Beibu Waterworks[J].China Water & Wastewater,2021,37(10):66.
[4]黄孟斌,武洋,王梅芳,等.深圳长流陂水厂网格絮凝池提升改造应用实践[J].中国给水排水,2021,37(12):116.
HUANG Meng-bin,WU Yang,WANG Mei-fang,et al.Application Practice of Grid Flocculation Tank Upgrading and Reconstruction in Shenzhen Changliupi Waterworks[J].China Water & Wastewater,2021,37(10):116.
[5]何嘉莉,袁耀芬,周沛良,等.自来水厂混凝剂自动精准投加系统建设与运行[J].中国给水排水,2021,37(18):139.
HE Jia-li,YUAN Yao-fen,ZHOU Pei-liang,et al.Construction and Operation of Automatic and Accurate Coagulant Dosing System in Waterworks[J].China Water & Wastewater,2021,37(10):139.
[6]杨存满,鞠佳伟,袁芳,等.基于PSO-BP神经网络的水厂智能消毒预测模型[J].中国给水排水,2022,38(3):57.
YANGCun-man,JUJia-wei,YUAN Fang,et al.Research on Intelligent Disinfection Prediction Model of Waterworks Based on PSO-BP Neural Network[J].China Water & Wastewater,2022,38(10):57.
[7]陈仁杰,刘明辉,丁陈龙,等.基于水厂砂滤填料附着物的BAF启动及其硝化性能[J].中国给水排水,2022,38(8):25.
CHENRen-jie,LIUMing-hui,DINGChen-long,et al.Startup of Biological Aerated Filter Seeded with Attached Microbes from Sand Filter in a Waterworks and Its Nitrification Performance[J].China Water & Wastewater,2022,38(10):25.
[8]李颖强,麻庆广,刘则华,等.我国南方典型自来水厂中游离氨基酸浓度及去除特性[J].中国给水排水,2022,38(13):28.
LIYing-qiang,MAQing-guang,LIUZe-hua,et al.Concentration Level and Removal of Fifteen Free Amino Acids in Eight Drinking Water Treatment Plants in South China[J].China Water & Wastewater,2022,38(10):28.
[9]宋欣,李燕君,黄慧,等.臭氧-上向流BAC工艺对常规及新污染物的控制效果[J].中国给水排水,2024,40(3):1.
SONGXin,LIYan-jun,HUANGHui,et al.Control of Conventional and Emerging Contaminants by Ozone-Upflow Biological Activated Carbon Process[J].China Water & Wastewater,2024,40(10):1.
[10]曾正仁,孙政,白华清,等.老旧自来水厂絮凝沉淀池技术改造实践[J].中国给水排水,2024,40(4):89.
ZENGZheng-ren,SUNZheng,BAIHua-qing,et al.Technical Transformation Practice of Flocculation Sedimentation Tank in an Aging Waterworks[J].China Water & Wastewater,2024,40(10):89.