CHENRen-jie,LIUMing-hui,DINGChen-long,et al.Startup of Biological Aerated Filter Seeded with Attached Microbes from Sand Filter in a Waterworks and Its Nitrification Performance[J].China Water & Wastewater,2022,38(8):25-30.
基于水厂砂滤填料附着物的BAF启动及其硝化性能
- Title:
- Startup of Biological Aerated Filter Seeded with Attached Microbes from Sand Filter in a Waterworks and Its Nitrification Performance
- 摘要:
- 对自来水厂砂滤池上层填料附着微生物的三组培养物进行了16S rRNA基因扩增子测序,分析其群落组成和结构差异,随后将三组培养物混合后成功启动了4个曝气生物滤池并分析各装置的硝化性能。结果表明:三组培养物仅检测出硝化螺旋菌属、亚硝化螺旋菌属和亚硝化单胞菌属三种硝化菌属;在NH4+-N浓度为0.5 mg/L时,硝化螺旋菌属是唯一的高丰度硝化微生物,由于缺少氨氧化细菌的存在,推测该硝化螺旋菌属可能存在完全氨氧化菌。4个曝气生物滤池装置成功启动后,在水力停留时间为2 d的条件下,滤池对NH4+-N均有较高的去除率(>98%)。以石英砂为填料的装置在连续进水的初期NO3--N浓度显著降低,由于进水未添加有机物且溶解氧充足,推测装置在此期间发生了好氧条件下的自养反硝化。以活性炭为填料的装置在连续进水后,不仅NH4+-N去除率高,而且还对NO3--N有较高的去除率(>99%),推测活性炭吸附-生物降解-再吸附是该滤池脱氮的主要作用机制。
- Abstract:
- Three groups of microbial cultures attached to the upper filler of a sand filter in a waterworks were sequenced by 16S rRNA gene amplicon sequencing to analyze their microbial community and structural differences. Then, the three groups of cultures were mixed for startup of four biological aerated filters, and the nitrification performance of each bio-filter was analyzed. Only three genera were detected in the three groups of cultures: Nitrospira, Nitrosospira, and Nitrosomonas. When the initial NH4+-N was 0.5 mg/L, Nitrospira was the only nitrifying bacterium with high relative abundance. Due to the lack of ammonia oxidizing bacteria, it was speculated that there may be complete ammonia oxidizing bacteria in the Nitrospira. After the successful startup of the four biological aerated filters, the NH4+-N removal efficiencies of the filters were all higher than 98% when the hydraulic retention time was 2 days. The NO3--N decreased significantly at the initial stage of continuous feeding in the sand filter. Since no organic matter was added into the influent and dissolved oxygen was sufficient, it was speculated that autotrophic denitrification took place under aerobic conditions during this period. In addition, the activated carbon filter not only had a high NH4+-N removal efficiency, but also had a NO3--N removal efficiency of more than 99% after continuous feeding. It is speculated that activated carbon adsorption-biodegradation-readsorption is the main mechanism of nitrogen removal in this filter.
相似文献/References:
[1]黄仲均,刘佳伟.基于一体化净水装置的自来水厂改造扩能案例分析[J].中国给水排水,2018,34(22):82.
HUANG Zhong-jun,LIU Jia-wei.Reconstruction and Expansion Design of Waterworks Based on Integrated Water Purification Device[J].China Water & Wastewater,2018,34(8):82.
[2]刘彦华,苏锡波,高迎亮,等.城镇自来水厂平流沉淀池改造技术与实践[J].中国给水排水,2020,36(14):131.
LIU Yan-hua,SU Xi-bo,GAO Ying-liang,et al.Renovation Technology and Practice of Horizontal Flow Sedimentation Tank in Urban Waterworks[J].China Water & Wastewater,2020,36(8):131.
[3]李丰庆.我国超大超滤水厂——广州北部水厂工艺设计[J].中国给水排水,2021,37(10):66.
LI Feng-qing.Process Design of the Super Large Ultrafiltration Waterworks in China: Guangzhou Beibu Waterworks[J].China Water & Wastewater,2021,37(8):66.
[4]赵新娟,刘伯一.短流程超滤膜工艺在凌庄水厂的应用[J].中国给水排水,2021,37(10):71.
ZHAO Xin-juan,LIU Bo-yi.Application of Short Process Ultrafiltration Membrane in Lingzhuang Waterworks[J].China Water & Wastewater,2021,37(8):71.
[5]黄孟斌,武洋,王梅芳,等.深圳长流陂水厂网格絮凝池提升改造应用实践[J].中国给水排水,2021,37(12):116.
HUANG Meng-bin,WU Yang,WANG Mei-fang,et al.Application Practice of Grid Flocculation Tank Upgrading and Reconstruction in Shenzhen Changliupi Waterworks[J].China Water & Wastewater,2021,37(8):116.
[6]何嘉莉,袁耀芬,周沛良,等.自来水厂混凝剂自动精准投加系统建设与运行[J].中国给水排水,2021,37(18):139.
HE Jia-li,YUAN Yao-fen,ZHOU Pei-liang,et al.Construction and Operation of Automatic and Accurate Coagulant Dosing System in Waterworks[J].China Water & Wastewater,2021,37(8):139.
[7]杨存满,鞠佳伟,袁芳,等.基于PSO-BP神经网络的水厂智能消毒预测模型[J].中国给水排水,2022,38(3):57.
YANGCun-man,JUJia-wei,YUAN Fang,et al.Research on Intelligent Disinfection Prediction Model of Waterworks Based on PSO-BP Neural Network[J].China Water & Wastewater,2022,38(8):57.
[8]韩文杰,周家中,刘妍,等.纯膜MBBR工艺处理微污染水的工程启动研究[J].中国给水排水,2022,38(7):19.
HANWen-jie,ZHOUJia-zhong,LIUYan,et al.Start-up of Pure MBBR Process for Micro-polluted Water Treatment[J].China Water & Wastewater,2022,38(8):19.
[9]李颖强,麻庆广,刘则华,等.我国南方典型自来水厂中游离氨基酸浓度及去除特性[J].中国给水排水,2022,38(13):28.
LIYing-qiang,MAQing-guang,LIUZe-hua,et al.Concentration Level and Removal of Fifteen Free Amino Acids in Eight Drinking Water Treatment Plants in South China[J].China Water & Wastewater,2022,38(8):28.
[10]宋欣,李燕君,黄慧,等.臭氧-上向流BAC工艺对常规及新污染物的控制效果[J].中国给水排水,2024,40(3):1.
SONGXin,LIYan-jun,HUANGHui,et al.Control of Conventional and Emerging Contaminants by Ozone-Upflow Biological Activated Carbon Process[J].China Water & Wastewater,2024,40(8):1.