MAHong-lin,SHIXu-jun,LIPing,et al.Performance of WWTP Containing Industrial Wastewater Based on Improved Bardenpho Process[J].China Water & Wastewater,2025,41(10):91-97.
含工业废水的改良Bardenpho污水厂运行效果
- Title:
- Performance of WWTP Containing Industrial Wastewater Based on Improved Bardenpho Process
- 关键词:
- 西北地区; 低温; 工业废水; 生活污水; 改良Bardenpho工艺
- Keywords:
- northwest region; low-temperature; industrial wastewater; domestic sewage; improved Bardenpho process
- 摘要:
- 西北地区含工业废水的城镇污水,采用复合式初沉池+改良Bardenpho+高效沉淀池+V型砂滤池工艺处理。复合式初沉池采用平流沉淀池和斜管沉淀池的组合设计,改良Bardenpho工艺的进水流量比例为预缺氧段∶厌氧段∶缺氧1段=2.0∶4.0∶4.0。在低温条件下,构筑物采用地埋式、半地埋式或置于室内。当进水COD、TN、NH4+-N、TP浓度分别为65.07~535.17、17.12~53.56、13.09~46.42、1.57~7.18 mg/L时,相应出水指标优于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,部分出水可长期作为生态补水及园林绿化用水。该工艺在冬季低温条件下运行良好,经营成本仅约2.46 元/m3。
- Abstract:
- The urban sewage containing industrial wastewater in the northwest region is treated by a combined process including composite primary sedimentation tank, improved Bardenpho process, high-density tank, and V-type sand filter. The composite primary sedimentation tank integrates both flat-flow and inclined tube sedimentation tanks. The flow rate ratio of the improved Bardenpho process is 2.0∶4.0∶4.0 for the pre-anoxic section, anaerobic section, and anoxic Ⅰ section. To accommodate low-temperature conditions, structures are designed to be either underground, semi-underground or located indoors. When influent COD, TN, NH4+-N and TP concentrations range from 65.07-535.17 mg/L,17.12-53.56 mg/L,13.09-46.42 mg/L, 1.57-7.18 mg/L, respectively, the effluent concentration is superior to the level A criteria in Discharge Standards of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). Portions of this effluent can be utilized for long-term ecological water replenishment as well as garden irrigation. This treatment process demonstrates effective operation under winter’s low-temperature conditions with an operating cost of only about 2.46 yuan/m3.
相似文献/References:
[1]阮昭意,谢益佳,黄廷林,等.低温下逆流充氧强化去除地表原水中的氨氮和锰[J].中国给水排水,2022,38(1):40.
RUAN Zhao-yi,XIE-Yi-jia,HUANG Ting-lin,et al.Enhanced Removal of Ammonia Nitrogen and Manganese from Surface Raw Water by Countercurrent Oxygenation at Low Temperature[J].China Water & Wastewater,2022,38(10):40.
[2]吴远远,Mark van Loosdrecht,郝晓地,等.好氧颗粒污泥低温稳定性中试研究[J].中国给水排水,2022,38(11):56.
WUYuan-yuan,Mark van Loosdrecht,HAOXiao-di,et al.A Pilot Study on Stability of Aerobic Granular Sludge at Low Temperature[J].China Water & Wastewater,2022,38(10):56.
[3]李志超,肖宁,林蔓,等.MBBR耦合MBR用于东北某低温高排放标准污水厂[J].中国给水排水,2022,38(14):77.
LIZhi-chao,XIAONing,LINMan,et al.Application of MBBR Coupled with MBR Process in a Stringent Discharge Standard Wastewater Treatment Plant in Northeast China at Low Temperature[J].China Water & Wastewater,2022,38(10):77.
[4]王帆,李军,艾胜书,等.HRT对多级A/O耦合流离生化工艺低温脱氮的影响[J].中国给水排水,2022,38(17):74.
WANGFan,LIJun,AISheng-shu,et al.Effect of Hydraulic Retention Time on Multistage A/O Coupled with Flow-separated Biochemical Process for Nitrogen Removal from Wastewater at Low Temperature[J].China Water & Wastewater,2022,38(10):74.
[5]鹿晓菲,许玉琳,马放,等.温度对CSTR-EGSB两段式厌氧反应器的影响[J].中国给水排水,2023,39(1):65.
LUXiao-fei,XUYu-lin,MAFang,et al.Effect of Temperature on CSTR-EGSB Two-stage Anaerobic Reactor[J].China Water & Wastewater,2023,39(10):65.
[6]刘婧邈,毕学军,杨新慈,等.低温条件下纯膜MBBR系统脱氮能力中试研究[J].中国给水排水,2023,39(19):19.
LIUJing-miao,BIXue-jun,YANG Xin-ci,et al.Nitrogen Removal Performance of a Pilot?scale Pure Moving Bed Biofilm Reactor System at Low Temperature[J].China Water & Wastewater,2023,39(10):19.
[7]郑建军,蒋轶锋,敖慧.低温下真空紫外氧化联合ABR处理餐饮废水[J].中国给水排水,2024,40(21):102.
ZHENGJian-jun,JIANGYi-feng,AOHui.Vacuum Ultraviolet Oxidation in Combination with Anaerobic Baffle Reactor for Restaurant Wastewater Treatment at Low Temperature[J].China Water & Wastewater,2024,40(10):102.
[8]梁硕,贠丹丹,王艳芝,等.硫自养反硝化滤池冬季低温脱氮中试[J].中国给水排水,2025,41(3):14.
LIANGShuo,YUNDan-dan,WANGYan-zhi,et al.Advanced Nitrogen Removal of Sulfur Autotrophic Denitrification Filter under Low Temperature in Winter: A Pilot?scale Study[J].China Water & Wastewater,2025,41(10):14.